全文获取类型
收费全文 | 67586篇 |
免费 | 756篇 |
国内免费 | 601篇 |
专业分类
测绘学 | 1494篇 |
大气科学 | 4518篇 |
地球物理 | 13504篇 |
地质学 | 25297篇 |
海洋学 | 5888篇 |
天文学 | 15082篇 |
综合类 | 169篇 |
自然地理 | 2991篇 |
出版年
2022年 | 549篇 |
2021年 | 866篇 |
2020年 | 936篇 |
2019年 | 1035篇 |
2018年 | 2176篇 |
2017年 | 2023篇 |
2016年 | 2333篇 |
2015年 | 1062篇 |
2014年 | 2085篇 |
2013年 | 3438篇 |
2012年 | 2359篇 |
2011年 | 2919篇 |
2010年 | 2673篇 |
2009年 | 3209篇 |
2008年 | 2810篇 |
2007年 | 2891篇 |
2006年 | 2761篇 |
2005年 | 1760篇 |
2004年 | 1625篇 |
2003年 | 1648篇 |
2002年 | 1604篇 |
2001年 | 1481篇 |
2000年 | 1398篇 |
1999年 | 1066篇 |
1998年 | 1035篇 |
1997年 | 1109篇 |
1996年 | 910篇 |
1995年 | 878篇 |
1994年 | 811篇 |
1993年 | 702篇 |
1992年 | 704篇 |
1991年 | 700篇 |
1990年 | 751篇 |
1989年 | 658篇 |
1988年 | 635篇 |
1987年 | 713篇 |
1986年 | 619篇 |
1985年 | 758篇 |
1984年 | 855篇 |
1983年 | 845篇 |
1982年 | 759篇 |
1981年 | 732篇 |
1980年 | 698篇 |
1979年 | 633篇 |
1978年 | 688篇 |
1977年 | 596篇 |
1976年 | 525篇 |
1975年 | 532篇 |
1974年 | 570篇 |
1973年 | 593篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization
of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the
necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry
using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of
these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new
surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally
be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method
is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation. 相似文献
152.
Jochem Verrelst Gertjan W. Geerling Karle V. Sykora Jan G.P.W. Clevers 《International Journal of Applied Earth Observation and Geoinformation》2009
Combined optical and laser altimeter data offer the potential to map and monitor plant communities based on their spectral and structural characteristics. A problem unresolved is, however, that narrowly defined plant communities, i.e. plant communities at a low hierarchical level of classification in the Braun-Blanquet system, often cannot be linked directly to remote sensing data for vegetation mapping. We studied whether and how a floristic dataset can be aggregated into a few major discrete, mappable classes without substantial loss of ecological meaning. Multi-source airborne data (CASI and LiDAR) and floristic field data were collected for a floodplain along the river Waal in the Netherlands. Mapping results based on floristic similarity alone did not achieve highest levels of accuracy. Ordination of floristic data showed that terrain elevation and soil moisture were the main underlying environmental drivers shaping the floodplain vegetation, but grouping of plant communities based on their position in the ordination space is not always obvious. Combined ordination-based grouping with floristic similarity clustering led to syntaxonomically relevant aggregated plant assemblages and yielded highest mapping accuracies. 相似文献
153.
Yong Ge Sanping Li V. Chris Lakhan Arko Lucieer 《International Journal of Applied Earth Observation and Geoinformation》2009
The existence of uncertainty in classified remotely sensed data necessitates the application of enhanced techniques for identifying and visualizing the various degrees of uncertainty. This paper, therefore, applies the multidimensional graphical data analysis technique of parallel coordinate plots (PCP) to visualize the uncertainty in Landsat Thematic Mapper (TM) data classified by the Maximum Likelihood Classifier (MLC) and Fuzzy C-Means (FCM). The Landsat TM data are from the Yellow River Delta, Shandong Province, China. Image classification with MLC and FCM provides the probability vector and fuzzy membership vector of each pixel. Based on these vectors, the Shannon's entropy (S.E.) of each pixel is calculated. PCPs are then produced for each classification output. The PCP axes denote the posterior probability vector and fuzzy membership vector and two additional axes represent S.E. and the associated degree of uncertainty. The PCPs highlight the distribution of probability values of different land cover types for each pixel, and also reflect the status of pixels with different degrees of uncertainty. Brushing functionality is then added to PCP visualization in order to highlight selected pixels of interest. This not only reduces the visualization uncertainty, but also provides invaluable information on the positional and spectral characteristics of targeted pixels. 相似文献
154.
Pece V. Gorsevski Paul E. Gessler 《ISPRS Journal of Photogrammetry and Remote Sensing》2009,64(2):184-192
Flexible and cost-effective tools for rapid image acquisition and natural resource mapping are needed by land managers. This paper describes the hardware and software architecture of a low-cost system that can be deployed on a light aircraft for rapid data acquisition. The Hyperspectral and Multispectral Cameras for Airborne Mapping (HAMCAM) was designed and developed in the Geospatial Laboratory for Environmental Dynamics at the University of Idaho as a student-learning tool, and to enhance the existing curriculum currently offered. The system integrates a hyperspectral sensor with four multispectral cameras, an Inertial Navigation System (INS), a Wide Area Augmentation System (WAAS)-capable Global Positioning System (GPS), a data acquisition computer, and custom software for running the sensors in a variety of different modes. The outputs include very high resolution imagery obtained in four adjustable visible and near-infrared bands from the multispectral imager. The hyperspectral sensor acquires 240 spectral bands along 2.7 nm intervals within the 445–900 nm range. The INS provides aircraft pitch, roll and yaw information for rapid geo-registration of the imagery. This paper will discuss the challenges associated with the development of the system and the integration of components and software for implementation of this system for natural resource management applications. In addition, sample imagery acquired by the sensor will be presented. 相似文献
155.
D. Rieke-Zapp W. Tecklenburg J. Peipe H. Hastedt Claudia Haig 《ISPRS Journal of Photogrammetry and Remote Sensing》2009,64(3):248-258
Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems–Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with FiBun software to model not only an image variant interior orientation, but also deformations in the sensor domain of the cameras, showed significant improvements only for a small group of cameras. The Nikon D3 camera yielded the best overall accuracy (25 μm maximum absolute length measurement error in object space) with this calibration procedure indicating at the same time the presence of image invariant error in the sensor domain. Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras. 相似文献
156.
Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard 总被引:1,自引:0,他引:1
In this work we have developed a theoretical model that helps the interpretation of the remotely sensed thermal infrared measurements carried out over citrus orchards. A detailed analysis of the different factors which take part in the definition of the effective emissivity and temperature (observation height, viewing angle, type of soil, dimensions and separation between orange trees) is made. The model was validated under vertical observation in a citrus orchard during seven nights. In this situation we have determined that the model performs to an accuracy of about 1%. 相似文献
157.
The paper discusses the land damage assessment and change detection analysis with reference to a mineral bearing zone in Manjhi,
Manuni and Churan valleys. The area is located in environmentally sensitive and fragile region of Himalaya and constitutes
of nearly 400 small-scale mines of slate, which were operative since last one hundred years and are stopped by court of law
since 1995 on account of environment deterioration. The status of land degradation has been studied using IRS-1B satellite
data of 1988,1992 and 1995. The geo-coded data on 1:50,000 scale has been interpreted and an increase in land degradation
status was noticed. Finally, the management strategy for arresting the further land damage in a broader perspective is suggested. 相似文献
158.
Background
Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration.Results
We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10?C35?years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high.Conclusions
Our ability to predict the response of forest carbon resources to anthropogenic and natural disturbances requires models that incorporate uncertainty in processes important to long-term forest carbon dynamics. To the extent that fuel treatments are able to ameliorate tree mortality rates or prevent deforestation resulting from wildfire, our results suggest that treatments may be a viable strategy to stabilize existing forest carbon stocks. 相似文献159.
A new method is presented for the computation of the gravitational attraction of topographic masses when their height information is given on a regular grid. It is shown that the representation of the terrain relief by means of a bilinear surface not only offers a serious alternative to the polyhedra modeling, but also approaches even more smoothly the continuous reality. Inserting a bilinear approximation into the known scheme of deriving closed analytical expressions for the potential and its first-order derivatives for an arbitrarily shaped polyhedron leads to a one-dimensional integration with – apparently – no analytical solution. However, due to the high degree of smoothness of the integrand function, the numerical computation of this integral is very efficient. Numerical tests using synthetic data and a densely sampled digital terrain model in the Bavarian Alps prove that the new method is comparable to or even faster than a terrain modeling using polyhedra. 相似文献
160.
Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression–structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial. 相似文献