首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   31篇
  国内免费   6篇
测绘学   20篇
大气科学   44篇
地球物理   150篇
地质学   273篇
海洋学   22篇
天文学   142篇
综合类   4篇
自然地理   61篇
  2023年   5篇
  2021年   4篇
  2020年   6篇
  2019年   20篇
  2018年   13篇
  2017年   14篇
  2016年   20篇
  2015年   13篇
  2014年   26篇
  2013年   32篇
  2012年   27篇
  2011年   35篇
  2010年   36篇
  2009年   41篇
  2008年   27篇
  2007年   23篇
  2006年   25篇
  2005年   20篇
  2004年   19篇
  2003年   19篇
  2002年   27篇
  2001年   12篇
  2000年   13篇
  1999年   22篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   9篇
  1994年   14篇
  1993年   6篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   10篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1974年   6篇
  1973年   8篇
  1972年   5篇
  1971年   6篇
排序方式: 共有716条查询结果,搜索用时 15 毫秒
91.
Uwe Fink 《Icarus》2009,201(1):311-334
A summary is presented of our spectroscopic survey of comets extending for roughly 19 years from 1985 to 2004 comprising data for 92 comets of which 50 showed good emissions. All data were re-analyzed using consistent reduction techniques. Our observations of comets over several apparitions and comets observed over an extended period indicate no major changes in compositional classification. To our regret, no major unidentified cometary features were found in our surveyed spectral region of 5200-10400 Å. Absolute production rates for the dominant parent molecule H2O and the daughter species C2, NH2 and CN are determined within the limits of the Haser model as are values for the dust continuum, Afρ. From these data, production rate ratios are calculated for C2/H2O, NH2/H2O, CN/H2O and Afρ/H2O. Excluding the odd Comets Yanaka (1988r), 43P/Wolf-Harrington and 19P/Borrelly, with unusual spectra, our set of comets exhibited relatively uniform composition. Detailed analyses of our data resulted in four taxonomic classes:
-
Comets of typical composition (∼70%); exhibiting typical ratios with respect to water of C2, NH2, and CN.
-
Tempel 1 type (∼22%); having a deficiency in C2 but normal NH2 abundance.
-
G-Z type (∼6%); having both low C2 and NH2 ratios.
-
The unusual object Yanaka (1988r) (∼2%?); no detectable C2 or CN emission but normal NH2.
It is uncertain whether there is a clear separation between the comets of typical composition and those with C2 depletion, or whether the latter consists of a group showing a continuum of decreasing C2/CN ratios. Our spectroscopic investigations result in a visual record of the various compositional classes, which are illustrated in a number of figures. Production rate comparisons with the comet photometry program of Schleicher and A'Hearn [A'Hearn, M.F., and 4 colleagues, 1995. Icarus 118, 223-270] for 13 comets in common yielded good agreement once the different scale lengths are taken into account. An investigation into the possible origin of our compositional groups with respect to dynamical families of comets shows that the Halley family exhibits essentially no C2 depletion. These objects were presumably formed in the region of Saturn and Uranus and scattered into the Oort cloud. Comets formed in the space near Neptune, responsible for the scattered Kuiper Belt show a mixture of “typical” and C2 depleted objects, while we associate comets formed in-situ in the classical Kuiper belt with our C2 depleted group.  相似文献   
92.
Using a Surface Forces Apparatus we have measured changes in the electrical potential difference between quartz and mica surfaces that correlate with the changing quartz dissolution rate when surfaces are pressed together at relatively low pressures (2-3 atm) in aqueous electrolyte solutions of 30 mM CaCl2 at 25 °C. No detectable dissolution or voltage potential difference is measured in symmetrical systems (e.g. mica-mica or quartz-quartz) or between dry surfaces subjected to similar pressures, indicating that the dissolution can not be attributed to a simple pressure effect, slow aging (creep), or plastic deformation of the quartz surface. In quartz-mica systems brought together under pressure or to close proximity in electrolyte solution, the onset of quartz dissolution is marked by a sudden, rapid decrease in the quartz thickness at initial rates in the range from 1 to 4 nm/min, which after several hours settles into a constant rate of approximately 0.01 nm/min (∼5 μm/yr). Concomitantly, the potential drops to a constant value once the dissolution rate has stabilized. The decrease in the decay rate is interpreted as being due to saturation of the confined aqueous film and/or to the buildup of a Stern layer on the quartz surface, and the constant rate as being due to the steady-state chemical dissolution and diffusion of the dissolving silica into the surrounding reservoir. The dissolution is ‘non-uniform’: the surfaces become rough as dissolution proceeds, with the appearance of pits in a manner analogous to corrosion. On occasions, the process of rapid dissolution followed by a gradual transition to steady dissolution repeats itself, suggesting that the pit structure and Stern layer are fragile and subject to collapse and/or expulsion from the gap. Preliminary experiments on the dissolution of multi-faceted milled quartz particles (∼1.0 μm diameter) compressed between two muscovite surfaces suggest an asymmetry in the dissolution rates at different crystallographic planes. The origin of the electrical potential is interpreted as arising from the overlapping of the electric double-layers of two dissimilar surfaces when they are forced into close proximity. This electrical potential difference, for as yet unknown reasons, appears to be the driving force for the dissolution, rather than pressure.  相似文献   
93.
94.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   
95.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
96.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   
97.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号