The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.
Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material. 相似文献
This study presents U–Pb ages for zircon, titanite, allanite and epidote, and initial Hf isotopic compositions for zircon of Upper Carboniferous granites, diorites and syenites from the Aar massif, central Alps. The rocks were emplaced during three magmatic pulses after Hercynian collisional tectonics: (A) a shoshonitic-ultrapotassic series at 334±2.5 Ma; (B) scattered diorites and granites at 308–310 Ma; and (C) a high-K cale-alkaline granite batholith at 298±2 Ma. Inheritance of old zircons is negligible among all three groups. The Southern Aar granite, in contrast, is a syn-tectonic, probably ca. 350 Ma old granite that contains large amounts of inherited Precambrian zircons. Alpine metamorphism caused weak lead loss in many analyzed zircon fractions, but left the titanite U–Pb system undisturbed: thorites were almost completely reset by Alpine and recent lead loss. Mineral isochrons defined by titanite, allanite, epidote and apatite yield initial Pb isotopic compositions that are in agreement with the model values of Stacey and Kramers. Initial Hf isotopic compositions range from Hf=–8 to +3.5. The data follow a trend of increasing Hf with decreasing age. The Hf versus element concentration relationships suggest mixing between a mantle and a crustal component. These relationships can be explained in terms of generation of the melts from a subcontinental mantle that had been enriched during subduction events at about 1 Ga and by 300 Ma had developed an isotopic signature distinct from that of MORB-type mantle. Further contamination of the melts occurred during ascent and differentiation in the crust. This late Hercynian magmatism can be related to post-collisional strike-slip tectonics. 相似文献
Apatite fission-track and (U-Th)/He analyses require the liberation of intact idiomorphic apatite grains from rock samples. While routinely being carried out by mechanical methods, electrodynamic disaggregation (ED) offers an alternative approach. The high-voltage discharges produced during the ED process create localised temperature peaks (10000 K) along a narrow plasma channel. In apatite, such high temperatures could potentially reduce the length of fission tracks, which start to anneal at temperatures > 60 °C, and could also enhance He diffusion, which becomes significant at 30–40 °C over geological time scales. A comparison of fission-track analyses and (U-Th)/He ages of apatites prepared both by mechanical (jaw crusher, disk mill) and ED processing provides a way of determining whether heating during the latter method has any significant effect. Apatites from three samples of different geological settings (an orthogneiss from Madagascar, the Fish Canyon Tuff, and a muscovite-gneiss from Greece) yielded statistically identical track length distributions compared to samples prepared mechanically. Additionally, (U-Th)/He ages of apatites from a leucogranite from Morocco prepared by both methods were indistinguishable. These first results indicated that during electrodynamic disaggregation apatite crystals were not heated enough to partially anneal the fission tracks or induce significant diffusive loss of He. 相似文献
Within the framework of the HPF project (Hyperalkaline Plume in Fractured Rock) at the Grimsel Test Site (Switzerland), a small scale core infiltration experiment was performed at the University of Bern. A high-pH solution was continuously injected, under a constant pressure gradient, into a cylindrical core of granite containing a fracture. This high-pH solution was a synthetic version of solutions characteristic of early stages in the degradation of cement. The interaction between the rock and the solutions was reflected by significant changes in the composition of the injected solution and a decrease in the permeability of the rock. Changes in the mineralogy and porosity of the fault gouge filling the fracture were only minor. One-dimensional reactive transport modeling, using a modified version of the GIMRT code, was used to interpret the results of the experiment. Dispersive and advective solute transport, mineral reaction kinetics and a coupling between porosity and permeability changes were taken into account. In order to obtain a reasonable agreement between models and experimental results, reactive surface areas of the order of 105 m2/m3 rock had to be used. These values are much smaller than the values measured for the fault gouge filling the fracture, which are in the order of 106–107 m2/m3 rock. However, the results could be improved by adding a small fraction of fine grained mineral, which could explain the high initial peaks in Al and Si concentration. With the inclusion of this fine grained fraction, the initial surface areas in the model were within the range of the measured specific surface areas of the fault gouge. The fact that the decrease in permeability was significant despite the minor changes in mineralogy, suggests that permeability may be controlled by changes in the structure of the rock (pore geometries) rather than by only the bulk volumetric (porosity) changes. 相似文献
The U–Pb age determinations of zircon and rutile from the Aar massif reveal a complex evolution of the Central Alpine basement. The oldest components are found in zircons of metasediments, which bear cores of Archean age; the U–Pb age of discordant prismatic zircons of the same rocks ranges between 580 and 680 Ma, an age that is typical for Pan-African metamorphism. The zircons are interpreted as Pan-African detritus with Archean inheritance. The provenance region of the Pan-African zircons is assumed to be a terrane of Gondwana-affinity, i.e. the W. African craton or the Pentevrian microplate. The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on the rocks of the Aar massif; it is dated at 456±2 and 445 Ma by zircons of a layered migmatitic gneiss and a migmatitic leucosome, respectively, both occurring in the northernmost zones of the massif. Hercynian metamorphism never exceeded greenschist-facies conditions and is recorded by zircon in a garnet-amphibolite and by rutile in a meta-psammite that yield an age of 330 Ma. Both zircon and rutile are considered to be products of retrograde mineral reactions and therefore do not date the peak conditions of Hercynian metamorphism. The Gastern granite at the western end of the Aar massif is a contaminated granite that intruded at 303±4 Ma, contemporaneously with the wide-spread late Hercynian post-collisional I-type magmatism. The study demonstrates the potential of isotope dilution U–Pb dating of single grains and microfractions in deciphering complex evolutionary histories of polymetamorphic terrains. 相似文献
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments. 相似文献
The fossil H chondrite Brunflo, found in a slab of Ordovician limestone from central Sweden, is pervasively altered to an assemblage dominated by calcite and barite. The meteorite is surrounded by a 15–20 cm wide zone of lighter colors than the unaffected limestone due to dissolution of hematite. Here we present detailed geochemical analyses of two meteorite samples, 14 limestone samples at distances from 0 to 29 cm along two profiles from the meteorite, and a reference sample of Brunflo limestone. Element concentrations in Brunflo and surrounding bleached limestone have been strongly disturbed during two stages of alteration (early oxygenated and deep burial). In the meteorite, the Ni/Co ratio has changed from an initial value of 20 to 0.8 and redox sensitive elements like V, As, Mo, Re and U are strongly enriched. The sulfur isotope composition of barite from Brunflo (δ34S=+35‰) indicates initial loss of meteoritic sulfide, followed by later accumulation of sea water sulfate as barite. During deep burial under more reducing conditions, reduction processes supported by an externally derived reductant possibly derived from alum shale underlying the limestone, were largely responsible for the observed redox phenomena. In spite of massive redistribution of many elements, concentrations of Pt, Ir and Au remain at chondritic levels. The geochemistry and mineralogy of alteration determined for Brunflo are similar to those in “reduction spots” in red beds, where accumulation of a similar suite of elements (except Mo, Re) occurred as a result of isolated reduction activity. 相似文献