首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1322篇
  免费   64篇
  国内免费   10篇
测绘学   27篇
大气科学   115篇
地球物理   348篇
地质学   553篇
海洋学   63篇
天文学   219篇
综合类   1篇
自然地理   70篇
  2021年   14篇
  2020年   15篇
  2019年   10篇
  2018年   43篇
  2017年   29篇
  2016年   38篇
  2015年   50篇
  2014年   52篇
  2013年   75篇
  2012年   55篇
  2011年   85篇
  2010年   73篇
  2009年   81篇
  2008年   46篇
  2007年   47篇
  2006年   34篇
  2005年   37篇
  2004年   38篇
  2003年   32篇
  2002年   16篇
  2001年   26篇
  2000年   32篇
  1999年   17篇
  1998年   22篇
  1997年   23篇
  1996年   17篇
  1995年   23篇
  1994年   12篇
  1993年   18篇
  1992年   12篇
  1991年   14篇
  1990年   14篇
  1989年   11篇
  1988年   14篇
  1987年   15篇
  1986年   13篇
  1984年   9篇
  1983年   13篇
  1982年   11篇
  1981年   11篇
  1980年   11篇
  1979年   11篇
  1978年   8篇
  1977年   9篇
  1976年   9篇
  1975年   8篇
  1974年   8篇
  1973年   10篇
  1970年   10篇
  1914年   7篇
排序方式: 共有1396条查询结果,搜索用时 867 毫秒
121.
122.
Geo‐composite cellular structures are an efficient technological solution for various applications in civil engineering. This type of structure is particularly well adapted to resisting rockfalls and can act as a defensive structure. However, the design of such structures is for the most part empirically based; this lack of research‐based design stagnates optimization and advanced development. In this paper, the mechanical behaviour of a geo‐composite cellular structure is investigated using a multi‐scale approach, from the individual cell made up of an assembly of rocky particles contained in a wire netting cage to the entire structure composed of a regular array of cells. Based on discrete modelling of both the cell and structure scales, a computational tool has been developed for design purposes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
123.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   
124.
This modelling study deals with the time‐dependent behaviour of rockfill media, which is of particular interest during the life of rockfill dams. Breakage of rock blocks and crack propagation are the main processes responsible for rockfill creep and collapse. The modelling procedure presented here is performed on two scales: on the rock block scale, where the grain is taken to be an assembly of rigid particles initially endowed with cohesive bonds, and on the rockfill scale, which is taken to involve a set of breakable grains interacting via contact and friction processes. The grain breakage process is described in term of a thermodynamically consistent damage interface model, where the damage is a gradual delayed process. This model was implemented in a non‐smooth contact dynamics code. The effects of the main parameters involved were analysed by performing numerical studies. The ability of the model to predict the creep behaviour of rockfill media is confirmed by presenting several simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
125.
An integral concept of ecological research is the constraint of biodiversity along latitudinal and environmental gradients. The Red Sea features a natural example of a latitudinal gradient of salinity, temperature and nutrient richness. Coral reefs along the Red Sea coasts are supported with allochthonous resources such as oceanic and neritic phytoplankton and zooplankton; however, relatively little is known about how the ecohydrography correlates with plankton biodiversity and abundance. In this article we present the biodiversity of phytoplankton and zooplankton in Red Sea coral reefs. Oceanographic data (temperature, salinity), water samples for nutrient analysis, particulate organic matter, phytoplankton and zooplankton, the latter with special reference to Copepoda (Crustacea), were collected at nine coral reefs over ~1500 km distance along the Red Sea coast of Saudi Arabia. The trophic state of ambient waters [as indicated by chlorophyll a (Chl a)] changed from strong oligotrophy in the north to mesotrophy in the south and was associated with increasing biomasses of Bacillariophyceae, picoeukaryotes and Synechococcus as indicated by pigment fingerprinting (CHEMTAX) and flow cytometry. Net‐phytoplankton microscopy revealed a Trichodesmium erythraeum (Cyanobacteria) bloom north of the Farasan Islands. Several potentially harmful algae, including Dinophysis miles and Gonyaulax spinifera (Dinophyceae), were encountered in larger numbers in the vicinity of the aquaculture facilities at Al Lith. Changes in zooplankton abundance were mainly correlated to the phytoplankton biomass following the latitudinal gradient. The largest zooplankton abundance was observed at the Farasan Archipelago, despite high abundances of copepodites, veligers (Gastropoda larvae) and Chaetognatha at Al Lith. Although the community composition changed over latitude, biodiversity indices of phytoplankton and zooplankton did not exhibit a systematic pattern. As this study constitutes the first current account of the plankton biodiversity in Red Sea coral reefs at a large spatial scale, the results will be informative for ecosystem‐based management along the coastline of Saudi Arabia.  相似文献   
126.
We report the B abundances and isotopic ratios of two olivine grains from the S‐type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic‐ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic‐ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.  相似文献   
127.
Abstract– We have performed six shock experiments at nominal peak‐shock pressures of 12.5, 20, 33, 46.5, 64, and 85 GPa using polycrystalline anhydrite discs embedded in ARMCO‐Fe sample containers and the shock reverberation technique. The recovered samples were analyzed using X‐ray powder diffraction and transmission electron microscopy (TEM). The X‐ray diffraction patterns recorded on all samples are compatible with the anhydrite structure; extra‐peaks have not been observed. Peak intensities decrease and peak broadening increases progressively in the pressure range from 0 to 46.5 GPa. At higher pressures, peak broadening diminishes and the X‐ray diffraction pattern of the 85 GPa sample resembles essentially that of unshocked, well‐crystallized anhydrite. Related structural changes at the nanoscale include in the pressure regime up to 20 GPa “cold” deformation phenomena such as cracks and deformation twins. Dislocation density increases up to 33 GPa and the strain increases up to 46.5 GPa. In the pressure range from 46.5 to 85 GPa, high postshock temperatures caused annealing of the deformation features. Increasing density and size of voids in the anhydrite samples shocked at 64 and 85 GPa indicate partial decomposition of anhydrite. Recalculation of the peak‐shock pressure in the experiments to a more realistic natural loading path indicates the onset of degassing of anhydrite in the pressure range of 30–41 GPa.  相似文献   
128.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   
129.
Abstract– We report Mg‐Al and Ca‐Ti isotopic data for meteoritic nanodiamonds separated from the Allende CV3 and Murchison CM2 meteorites. The goal of this study was to search for excesses in 26Mg and 44Ca, which can be attributed to the in situ decay of radioactive and now extinct 26Al and 44Ti, respectively. Previous work on presolar SiC and graphite had shown that 26Al/27Al and 44Ti/48Ti ratios in presolar grains can be used to discriminate between different types of stellar sources. Aluminum and Ti concentrations are low in the meteoritic nanodiamonds of this study. Murchison nanodiamonds have higher Al and Ti concentrations than the Allende nanodiamonds. This can be attributed to contamination and the presence of presolar SiC in the Murchison nanodiamond samples. 26Mg/24Mg and 44Ca/40Ca ratios are close to normal in Allende nanodiamonds with upper limits on the initial 26Al/27Al and 44Ti/48Ti ratios of approximately 1 × 10?3. These ratios are factors of 10–1000 and, respectively, 1–1000 lower than those of presolar SiC and graphite grains from supernovae. The 26Al/27Al and 44Ti/48Ti data for nanodiamonds are compatible with an asymptotic giant branch star or solar system origin, but not with a supernova origin of a major fraction of meteoritic nanodiamonds. The latter possibility cannot be excluded, though, as the diamond separates may contain significant amounts of contaminating Al and Ti, which would lower the inferred 26Al/27Al and 44Ti/48Ti ratios considerably.  相似文献   
130.
Fluid inclusions in quartz are known to modify their shapes and microstructures (textures) during weak plastic deformation. However, such changes have not been experimentally demonstrated and criteria are not available to relate them to paleostress conditions. To address these issues, quartz crystals containing natural CO2–H2O–NaCl fluid inclusions have been experimentally subjected to compressive deviatoric stresses of 90–250 MPa at 700°C and ~600 MPa confining pressure. Strains of up to 1% cause the inclusions to develop irregular shapes and to generate microcracks in crystallographic planes oriented subperpendicular to the major compression axis, σ 1. The uniform alignment of the microcracks imparts a planar fabric to the samples. The microcracks heal and form swarms of tiny satellite inclusions. These new inclusions lose H2O by diffusion, thereby triggering plastic deformation of the surrounding quartz via H2O-weakening. Consequently, the quartz samples deform plastically only in domains originally rich in inclusions. This study shows that fluid inclusions deformed by deviatoric stresses may indeed record information on paleostress orientations and that they play a key role in facilitating crystal-plastic deformation of quartz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号