首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   22篇
  国内免费   4篇
测绘学   15篇
大气科学   50篇
地球物理   155篇
地质学   210篇
海洋学   30篇
天文学   123篇
综合类   1篇
自然地理   31篇
  2021年   5篇
  2020年   4篇
  2018年   17篇
  2017年   13篇
  2016年   17篇
  2015年   24篇
  2014年   19篇
  2013年   23篇
  2012年   24篇
  2011年   43篇
  2010年   31篇
  2009年   34篇
  2008年   21篇
  2007年   24篇
  2006年   13篇
  2005年   17篇
  2004年   12篇
  2003年   18篇
  2002年   10篇
  2001年   11篇
  2000年   16篇
  1999年   13篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1976年   6篇
  1975年   4篇
  1973年   7篇
  1970年   8篇
  1969年   4篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有615条查询结果,搜索用时 609 毫秒
221.
Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes.Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition.The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.  相似文献   
222.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   
223.
Terrestrial cosmogenic nuclide (TCN) 10Be surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at  11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modern stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2–3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions.  相似文献   
224.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   
225.
Abstract— A series of experiments carried out by Koscheev et al. (1998, 2001, 2004, 2005) showed that the bimodal release of heavy noble gases from meteoritic nanodiamonds can be reproduced by a single implanted component. This paper investigates the implications of this result for interpreting the noble gas compositions of meteoritic nanodiamonds and for their origin and history. If the bimodal release exhibited by meteorite diamonds reflects release of the P3 noble gas component, then the composition inferred for the pure Xe‐HL end member changes slightly, the excesses of heavy krypton isotopes that define Kr‐H become less extreme, evidence appears for a Kr‐L component, and the nucleosynthetic contribution to argon becomes much smaller. After correction for cosmogenic neon inherited from the host meteorites, the neon in presolar diamonds shows evidence for pre‐irradiation, perhaps in interstellar space, and a nucleosynthetic component perhaps consistent with a supernova source. After a similar correction, helium also shows evidence for presolar irradiation and/or a nucleosynthetic component. For the case of presolar irradiation, due to the small size of the diamonds, a large entity must have been irradiated and recoiling product nuclei collected by the nanodiamonds. The high 3He/21Ne ratio (?43) calls for a target with a (C + O)/heavier‐element ratio higher than in chondritic abundances. Bulk gas + dust (cosmic abundances) meet this criteria, as would solids enriched in carbonaceous material. The long recoil range of cosmogenic 3He argues against a specific phase. The excess 3He in presolar diamonds may represent trapped cosmic rays rather than cosmogenic 3He produced in the vicinity of the diamond crystals.  相似文献   
226.
The simultaneous quantitative determination of two-dimensional bromine monoxide (BrO) and sulphur dioxide (SO2) distributions in volcanic gas plumes is described. Measurements at the fumarolic field on the island Vulcano (autumn 2004) and in the plume of Mt. Etna volcano (spring 2005) were carried out with an Imaging DOAS instrument. The SO2 fluxes of several fumaroles were estimated from two-dimensional distributions of SO2. Additionally, the first two-dimensional distributions of BrO within a volcanic plume were successfully retrieved. Slant column densities of up to 2.6 × 1014 molecules per square centimetre were detected in the plume of Mt. Etna. The investigation of the BrO/SO2 ratio, calculated from the two-dimensional distributions of SO2 and BrO, shows an increase from the centre to the edge of the volcanic plume. These results have significance for the involvement of ozone during BrO formation processes in volcanic emissions.  相似文献   
227.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   
228.
Sudden stratospheric warming (SSW) events are identified to investigate their influence on the equatorial tropospheric climate. Composite analysis of warming events from Era-Interim (1979–2013) record a cooling of the tropical lower stratosphere with corresponding changes in the mean meridional stratospheric circulation. A cooling of the upper troposphere induces enhanced convective activity near the equatorial region of the Southern Hemisphere and suppressed convective activity in the off-equatorial Northern Hemisphere. After selecting vortex splits, the see-saw pattern of convective activity in the troposphere grows prominent and robust.  相似文献   
229.
International Journal of Earth Sciences - The El Abra porphyry copper deposit belongs to the Late Eocene—Early Oligocene metallogenic belt of northern Chile, which host several world-class...  相似文献   
230.
We use thermodynamically self-consistent and hybrid methods to analyze the correlation of important physical parameters (e.g. bulk density, elastic moduli) with bulk Mg# and modal composition in mantle peridotites at upper mantle conditions. Temperature (anharmonic and anelastic), pressure and compositional derivatives for all these parameters are evaluated. The results show that the widely used correlations between Vp/Vs and Mg# in peridotites are strictly valid only for garnet-bearing assemblages at temperatures < 900 °C. The correlation breaks down when: i) spinel is the stable Al-rich phase in the assemblage and ii) when anelastic attenuation of seismic velocities becomes important (T ? 900 °C). This implies that the range of applicability of published Vp/Vs–Mg# correlations for the upper mantle is limited to a depth interval between the spinel–garnet phase transition and the 900 °C isotherm. We use numerical simulations to show that this depth interval is virtually nonexistent in lithospheres thinner than ~ 140 km and can comprise up to ~ 50% of the lithospheric mantle in thick (> 220 km) lithospheric domains. In addition, we show that for most of the upper mantle the expected Δ(Vp/Vs) values associated with compositional variations are smaller than the resolution limit of current seismological methods. All these considerations suggest that the Vp/Vs ratio is not a reliable measure of compositional variations and that for large parts of the upper mantle compositional anomalies cannot be separated from thermal anomalies on the basis of seismological studies only. We further confirm that the only reliable indicator of compositional anomalies in a peridotitic mantle is the ratio of density to shear wave velocities (ρ/Vs). Our results demonstrate that geophysical–petrological models (forward or inverse) that model these two fields (i.e. density and Vs) self-consistently within a robust thermodynamic framework are necessary for characterizing the small-scale thermal and compositional structure of the lithosphere and sublithospheric upper mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号