首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2924篇
  免费   49篇
  国内免费   49篇
测绘学   71篇
大气科学   356篇
地球物理   620篇
地质学   995篇
海洋学   154篇
天文学   678篇
综合类   15篇
自然地理   133篇
  2021年   15篇
  2020年   15篇
  2019年   16篇
  2018年   49篇
  2017年   41篇
  2016年   60篇
  2015年   35篇
  2014年   64篇
  2013年   108篇
  2012年   82篇
  2011年   115篇
  2010年   92篇
  2009年   121篇
  2008年   133篇
  2007年   116篇
  2006年   93篇
  2005年   119篇
  2004年   98篇
  2003年   83篇
  2002年   95篇
  2001年   80篇
  2000年   80篇
  1999年   90篇
  1998年   89篇
  1997年   73篇
  1996年   70篇
  1995年   69篇
  1994年   51篇
  1993年   51篇
  1992年   47篇
  1991年   56篇
  1990年   44篇
  1989年   43篇
  1988年   21篇
  1987年   32篇
  1986年   35篇
  1985年   31篇
  1984年   51篇
  1983年   33篇
  1982年   38篇
  1981年   42篇
  1980年   39篇
  1979年   33篇
  1978年   32篇
  1977年   20篇
  1976年   26篇
  1975年   16篇
  1974年   30篇
  1973年   17篇
  1971年   22篇
排序方式: 共有3022条查询结果,搜索用时 925 毫秒
751.
Summary The feasibility of inferring ionospheric electric fields from measurements at balloon altitudes has been studied by analytical and numerical analysis, using a twodimensional model atmosphere with exponentially varying conductivity, and taking into account electric fields of tropospheric origin.This paper was presented byU. Fahleson.  相似文献   
752.
Zusammenfassung An Rand besonders der Ergebnisse der « Deutschen Grönland-Expedition Alfred Wegener » werden die Zusammenhänge zwischen Luft-Temperatur, Sonnenstrahlung und Boden in einfacher Weise entwickelt.
Summary The results of the « German Grönlandexpedition Alfred Wegener » are used, to give a picture of the relation between air-temperature, solar radiation and the soil.
  相似文献   
753.
Summary The 1986 GPS survey of Iceland aimed to: (1) establish geodetic control in the South Iceland Seismic Zone (SISZ), to study destructive earthquakes there, (2) measure a country-wide network to form the basis of a new first order national network. 51 points were surveyed, with 20–30 km spacings within the SISZ and 100 km spacings elsewhere. The data were processed using the Bernese GPS software Version 3. Analysis was difficult due to poor satellite geometry and short-period ionospheric variations. However, an ambiguity-fixed, ionosphere-free solution gave accuracies of 1–2 cm in the horizontal and 2–3 cm in the vertical for the SISZ network and an ambiguity-free, ionosphere-free solution yielded accuracies of about 5 cm for the country-wide network. An ionosphere-free solution for the total survey with ambiguities fixed for the SISZ network only gave marginal additional improvements over the two separate solutions. GPS surveying has continued annually in Iceland with measurements in South Iceland in 1989 and 1992 (Hackman 1991; Sigmundsson 1992) and in North Iceland in 1987, 1990 and 1992 (Jahn et al. 1992; Foulger et al. 1992).  相似文献   
754.
In order to simulate earthquake ground motions for the Instanbul (Turkey) region, acceleration time series from western Turkey are modeled by transforming the series into a stationary one which can be described by an autoregressive moving-average (ARMA) process. The ARMA and other parameters used in the stationary transformation are related to physical parameters (e.g. magnitude, distance to epicenter, depth to hypocenter and duration) via a regression analysis. To create simulations for a given set of physical parameters, the modelling procedure is reversed.  相似文献   
755.
Confocal scanning light microscopy is a valuable new method for examining the nature and progress of stone weathering at a level of resolution between optical microscopy and scanning electron microscopy. Not only is it non-destructive, but it can also create three-dimensional images.  相似文献   
756.
757.
In situ measurements of the solar wind largely cover more than two solar magnetic activity cycles, namely 20 and 21. This is a very appealing opportunity to study the influence of the activity cycle on the behaviour of the solar wind parameters. As a matter of fact, many authors so far have studied this topic comparing the long-term magnetic field and plasma averages. However, when the average values are evaluated on a data sample whose duration is comparable with (or even longer than) the solar rotation period we lose information about the contribution due to the fast and the slow solar wind components. Thus, discriminating in velocity plays a key role in understanding solar cycle effects on the solar wind. Based on these considerations, we performed a separate analysis for fast and slow wind, respectively. In particular, we found that: (a) fast wind carries a slightly larger momentum flux density at 1 AU, probably due to dynamic stream-stream interaction; (b) proton number density in slow wind is more cycle dependent than in fast wind and decreases remarkably across solar maximum; (c) fast wind generally carries a magnetic field intensity stronger than that carried by the slow wind; (d) we found no evidence for a positive correlation between velocity and field intensity as predicted by some theories of solar wind acceleration; (e) our results would support an approximately constant divergence of field lines associated with corotating high-velocity streams.  相似文献   
758.
During the Triassic, the Thakkhola region of the Nepal Himalaya was part of the broad continental shelf of Gondwana facing a wide Eastern Tethys ocean. This margin was continuous from Arabia to Northwest Australia and spanned tropical and temperate latitudes.A compilation of Permian, Triassic and early Jurassic paleomagnetic data from the reconstructed Gondwana blocks indicates that the margin was progressively shifting northward into more tropical latitudes. The Thakkhola region was approximately 55° S during Late Permian, 40° S during Early Triassic, 30° S during Middle Triassic and 25° S during Late Triassic. This paleolatitude change produced a general increase in the relative importance of carbonate deposition through the Triassic on the Himalaya and Australian margins. Regional tectonics were important in governing local subsidence rates and influx of terrigenous clastics to these Gondwana margins; but eustatic sea-level changes provide a regional and global correlation of major marine transgressions, prograding margin deposits and shallowing-upward successions. A general mega-cycle characterizes the Triassic beginning with a major transgression at the base of the Triassic, followed by a general shallowing-upward of facies during Middle and Late Triassic, and climaxing with a regression in the latest Triassic.  相似文献   
759.
The Mesozoic sediments of Thakkhola (central Nepal) were deposited on a broad eastern north Gondwanan passive margin at mid-latitudes (28–41 °S) facing the Southern Tethys ocean to the north. The facies is strikingly similar over a distance of several thousand kilometres from Ladakh in the west to Tibet and to the paleogeographically adjacent north-west Australian margin (Exmouth Plateau, ODP Legs 122/123) and Timor in the east. Late Paleozoic rifting led to the opening of the Neo-Tethys ocean in Early Triassic times. An almost uninterrupted about 2 km thick sequence of syn-rift sediments was deposited on a slowly subsiding shelf and slope from Early Triassic to late Valanginian times when break-up between Gondwana (north-west Australia) and Greater India formed the proto-Indian Ocean. The sedimentation is controlled by (1) global events (eustasy; climatic/oceanographic changes due to latitudinal drift; plate reorganization leading to rift-type block-faulting) and (2) local factors, such as varying fluvio-deltaic sediment input, especially during Permian and late Norian times. Sea level was extremely low in Permian, high in Carnian and low again during Rhaeto-Liassic times. Third-order sea-level cycles may have occurred in the Early Triassic and late Norian to Rhaeto-Liassic. During the Permian pure quartz sand and gravel were deposited as shallowing upward series of submarine channel or barrier island sands. The high compositional maturity is typical of a stable craton-type hinterland, uplifted during a major rifting episode. During the early Triassic a 20–30 m thick condensed sequence of nodular ‘ammonitico rosso’-type marlstone with a ‘pelagic’ fauna was deposited (Tamba Kurkur Formation). This indicates tectonic subsidence and sediment starvation during the transgression of the Neo-Tethys ocean. During Carnian times a 400 m thick sequence of fining upward, filament-rich wackestone/shale cycles was deposited in a bathyal environment (Mukut Formation). This is overlain by about 300 m of sandy shale and siltstone intercalated with quartz-rich bioclastic grain- to rudstone (Tarap Shale Formation, late Carnian-Norian). The upper Norian to (?lower) Rhaetian Quartzite Formation consists of (sub)arkosic sandstones and pure quartz arenites, indicating different sediment sources. The fluvio-deltaic sandstones are intercalated with silty shale, coal and bioclastic limestone, as well as mixed siliciclastic-bioclastic rocks. The depositional environment was marginal marine to shallow subtidal. The fluvio-deltaic influence decreased towards the overlying carbonates of Rhaeto-Liassic (?) age (Jomosom Formation correlative with the Kioto Limestone), when the region entered tropical paleolatitudes resulting in platform carbonates.  相似文献   
760.
Summary Groundwater control is a means of ensuring that no gas leakage occurs from unlined rock storage caverns. To achieve a better understanding of the principles of gas containment under groundwater and how to obtain maximum gas storage capacity, analyses of groundwater conditions surrounding storage caverns and the effects of different factors on gas storage capacity have been performed and are reported in this paper. The analysis results indicate that the critical gas pressure of a storage facility is considerably less than the natural hydrostatic pressure around the caverns and somewhat less than the water curtain pressure. High gas storage capacity can be obtained by optimizing the design of cavern configuration, water curtain layout, cavern depth, etc. The principles of such optimization are outlined in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号