首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   17篇
  国内免费   2篇
测绘学   8篇
大气科学   16篇
地球物理   39篇
地质学   46篇
海洋学   15篇
天文学   31篇
自然地理   7篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   4篇
  2016年   12篇
  2015年   6篇
  2014年   6篇
  2013年   13篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1925年   1篇
排序方式: 共有162条查询结果,搜索用时 421 毫秒
31.
The Pleistocene ungulate communities from the western coastal plains of South Africa's Cape Floristic Region (CFR) are diverse and dominated by grazers, in contrast to the region's Holocene and historical faunas, which are relatively species-poor and dominated by small-bodied browsers and mixed feeders. An expansion of grassy habitats is clearly implied by the Pleistocene faunas, but the presence of ruminant grazers that cannot survive the summer dry season typical of the region today suggests other important paleoecological changes. Here we use dental ecometrics to explore the paleoecological implications of the region's Pleistocene faunas. We show that the dental traits (hypsodonty and occlusal topography) of the ungulates that occurred historically in the CFR track annual and summer aridity, and we use these relationships to reconstruct past aridity. Our results indicate that the Pleistocene faunas signal paleoenvironments that were on average less arid than today, including during the summer, consistent with other lines of evidence that suggest a higher water table and expansion of well-watered habitats. Greater water availability can be explained by lower temperature and reduced evapotranspiration during cooler phases of the Pleistocene, probably coupled with enhanced groundwater recharge due to increased winter precipitation.  相似文献   
32.
33.
34.
Effective climate policy will consist of mitigation and adaptation implemented simultaneously in a policy portfolio to reduce the risks of climate change. Previous studies of the tradeoffs between mitigation and adaptation have implicitly framed the problem deterministically, choosing the optimal paths for all time. Because climate change is a long-term problem with significant uncertainties and opportunities to learn and revise, critical tradeoffs between mitigation and adaptation in the near-term have not been considered. We propose a new framework for considering the portfolio of mitigation and adaptation that explicitly treats the problem as a multi-stage decision under uncertainty. In this context, there are additional benefits to near-term investments if they reduce uncertainty and lead to improved future decisions. Two particular features are fundamental to understanding the relevant tradeoffs between mitigation and adaptation: (1) strategy dynamics over time in reducing climate damages, and (2) strategy dynamics under uncertainty and potential for learning. Our framework strengthens the argument for disaggregating adaption as has been proposed by others. We present three stylized classes of adaptation investment types as a conceptual framework: short-lived “flow” spending, committed “stock” investment, and lower capacity “option” stock with the capability of future upgrading. In the context of sequential decision under uncertainty, these subtypes of adaptation have important tradeoffs among them and with mitigation. We argue that given the large policy uncertainty that we face currently, explicitly considering adaptation “option” investments is a valuable component of a near-term policy response that can balance between the flexible flow and committed stock approaches, as it allows for the delay of costly stock investments while at the same time allowing for lower-cost risk management of future damages.  相似文献   
35.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
36.
Recirculating wells are increasingly being used for ground water remediation and aquifer characterization investigations. Determination of flow rate is required for proper design and spacing of recirculation wells. The measurement of flow rate, however, can be difficult using standard equipment. To overcome some of the flow measurement problems associated with more common measurement systems, a new device in the form of a downhole weir was developed for recirculating wells that use a two-casing design. The weir was designed to measure flow rates between 10 and 40 gpm. In this flow range, the weir had an accuracy of ±2.8 gpm. This accuracy may be improved with some modifications.  相似文献   
37.
38.
Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the new 12.6 cm radar at the Arecibo Observatory during 1975–1976. Interpretation of each power spectrum suggests rms surface tilts of 4° at the final A1WNW (47.9°W, 22.5°N) site, 5° near the original A1 site, and 6° between the two. At the back-up site (A2) surface roughness estimates were about 4°. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1 to 100 m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.  相似文献   
39.
Toward a Future for Gaia Theory   总被引:1,自引:0,他引:1  
Tyler Volk 《Climatic change》2002,52(4):423-430
  相似文献   
40.
Riparian cottonwood forests in dry regions of western North America do not typically receive sufficient growing season precipitation to completely support their relatively high transpiration requirements. Water used in transpiration by riparian ecosystems must include alluvial groundwater or water stored in the potentially large reservoir of the unsaturated soil zone. We used the stable oxygen and hydrogen isotope composition of stem xylem water to evaluate water sources used by the dominant riparian cottonwood (Populus spp.) trees and shrubs (Shepherdia argentea and Symphoricarpos occidentalis) in Lethbridge, Alberta, during 3 years of contrasting environmental conditions. Cottonwoods did not exclusively take up alluvial groundwater but made extensive use of water sourced from the unsaturated soil zone. The oxygen and hydrogen isotope compositions of cottonwood stem water did not strongly overlap with those of alluvial groundwater, which were closely associated with the local meteoric water line. Instead, cottonwood stem water δ18O and δ2H values were located below the local meteoric water line, forming a line with a low slope that was indicative of water exposed to evaporative enrichment of heavy isotopes. In addition, cottonwood xylem water isotope compositions had negative values of deuterium excess (d‐excess) and line‐conditioned (deuterium) excess (lc‐excess), both of which provided evidence that water taken up by the cottonwoods had been exposed to fractionation during evaporation. The shrub species had lower values of d‐excess and lc‐excess than had the cottonwood trees due to shallower rooting depths, and the d‐excess values declined during the growing season, as shallow soil water that was taken up by the plants was exposed to increasing, cumulative evaporative enrichment. The apparent differences in functional rooting pattern between cottonwoods and the shrub species, strongly influenced the ratio of net photosynthesis to stomatal conductance (intrinsic water‐use efficiency), as shown by variation among species in the δ13C values of leaf tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号