首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   17篇
  国内免费   2篇
测绘学   8篇
大气科学   16篇
地球物理   39篇
地质学   46篇
海洋学   15篇
天文学   31篇
自然地理   7篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   4篇
  2016年   12篇
  2015年   6篇
  2014年   6篇
  2013年   13篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1925年   1篇
排序方式: 共有162条查询结果,搜索用时 62 毫秒
131.
To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber‐optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30‐m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS‐based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.  相似文献   
132.
Due to recent Supreme Court rulings, there has been an increased interest in the isolated wetlands of the United States. These types of wetlands serve vital ecological roles such as water quality regulation and as a habitat of biological diversity. This study focuses specifically on mapping of geographically isolated wetlands, or those that are separated from traditional wetlands by a given spatial extent, using Geographic Object-Based Image Analysis (GeOBIA). GeOBIA is a type of remote sensing analysis that identifies objects and features in data-sets via automated methodologies. This type of analysis offers the opportunity to increase the efficiency of what has traditionally been a very labour intensive process of manual photo-interpretation. This analysis resulted in the delineation of 26,424 areas as geographically isolated wetlands. These results were assessed for accuracy through both manual inspection of aerial imagery and field verification which yielded accuracies of 83.7 and 87.7%, respectively.  相似文献   
133.
Texture or spatial arrangement of neighborhood objects and features plays an important role in the human visual system for pattern recognition and image classification. The traditional spectral–based image processing techniques have proven inadequate for urban land use and land cover mapping from images acquired by the current generation of fine–resolution satellites. This is because of the high frequency spatial arrangements or complex nature of urban features. There is a need for an effective algorithm to digitally classify urban land use and land cover categories using high–resolution image data. Recent studies using wavelet transforms for texture analysis have generally reported better accuracy. Based on a high–resolution ATLAS image, this study illustrates four different wavelet decomposition procedures – the standard, horizontal, vertical, and diagonal decompositions – for urban land use and land cover feature extraction with the use of 33×33 pixel samples. The standard decomposition approach was found to be the most efficient approach in urban texture analysis and classification. For comparison purposes and to better evaluate the accuracy of wavelet approaches in image classification, spatial autocorrelation techniques (Moran's I and Geary's C ) and the spatial co–occurrence matrix method were also examined. The results suggest that the wavelet transform approach is superior to all other approaches.  相似文献   
134.
溪洛渡等河道型水库具有库容大且径流量大的特点,热动力过程和水温分布迥异于天然河流或湖泊。通过温度链对溪洛渡水库坝前水温进行长期高频监测,选取升温期和降温期典型时段,分析表层水温的昼夜变化和温跃层的内波现象;计算表面热交换,并分析其对水温变化的影响。结果表明:水面混合层在水面热交换的控制下周期性出现和消失;在升温期水面吸热对于变温层升温过程有重要影响;在降温期,水面失热驱动了垂向混合,入流降温形成侵入流,共同控制变温层的降温过程;温跃层中24 h周期的内波形成与出流日调节有直接因果关系。与实测数据计算的水面热通量相比,采用气象站日值数据的溪洛渡数值模型的模拟值偏小。  相似文献   
135.
Hyporheic exchange influences water quality and controls numerous physical, chemical, and biological processes. Despite its importance, hyporheic exchange and the associated dynamics of solute mixing are often difficult to characterize due to spatial (e.g., sedimentary heterogeneity) and temporal (e.g., river stage fluctuation) variabilities. This study coupled geophysical techniques with physical and chemical sediment analyses to map sedimentary architecture and quantify its influence on hyporheic exchange dynamics within a compound bar deposit in a gravel-dominated river system in southwestern Ohio. Electromagnetic induction (EMI) was used to quantify variability in electrical conductivity within the compound bar. EMI informed locations of electrode placement for time-lapse electrical resistivity imaging (ERI) surveys, which were used to examine changes in electrical resistivity driven by hyporheic exchange. Both geophysical methods revealed a zone of high electrical conductivity in the center of the bar, identified as a fine-grained cross-bar channel fill. The zone acts as a baffle to flow, evidenced by stable electrical conditions measured by time-lapse ERI over the study period. Large changes in electrical resistivity throughout the survey period indicate preferential flowpaths through higher permeability sands and gravels. Grain size analyses confirmed sedimentological interpretations of geophysical data. Loss on ignition and x-ray fluorescence identified zones with higher organic matter content that are locations for potentially enhanced geochemical activity within the cross-bar channel fill. Differences in the physical and geochemical characteristics of cross-bar channel fills play an important role in hyporheic flow dynamics and nutrient processing within riverbed sediments. These findings enhance our understanding of the applications of geophysical methods in mapping riverbed heterogeneity and highlight the importance of accurately representing geomorphologic features and heterogeneity when studying hyporheic exchange processes.  相似文献   
136.
Tyler SW  Muñoz JF  Wood WW 《Ground water》2006,44(3):329-338
Dry playa lakes and sabkhat often represent the terminus of large ground water flow systems and act as integrators of both upgradient (recharge) and downgradient discharge (evaporation). Ground water levels beneath playa/sabkha systems show a variety of surprising responses driven by large evaporation demands and chemical processes not typically encountered in more humid regions. When the water table is very close to the land surface, almost instantaneous rises can be observed with little observed change in either upgradient ground water recharge or potential evaporation. Conversely, when water tables are several meters below the playa surface, water table responses to interannual variability of recharge can be damped and lag significantly behind such changes. This review of the dynamics of shallow water tables in playa lakes and sabkhat discusses the pertinent hydraulic and solute processes and extracts a simple but comprehensive model based on soil physics for predicting the water table response to either upstream recharge changes or changes in potential evaporation at the playa/sabkha. Solutes and associated authigenic minerals are also shown to be important in discriminating both the causes and effects of water level fluctuations.  相似文献   
137.
A 581 km vibroseis-source, deep seismic reflection survey was acquired through the Capricorn Orogen of Western Australia and, for the first time, provides an unprecedented view of the deep crustal architecture of the West Australian Craton. The survey has imaged three principal suture zones, as well as several other lithospheric-scale faults. The suture zones separate four seismically distinct tectonic blocks, which include the Pilbara Craton, the Bandee Seismic Province (a previously unrecognised tectonic block), the Glenburgh Terrane of the Gascoyne Province and the Narryer Terrane of the Yilgarn Craton. In the upper crust, the survey imaged numerous Proterozoic granite batholiths as well as the architecture of the Mesoproterozoic Edmund and Collier basins. These features were formed during the punctuated reworking of the craton by the reactivation of the major crustal structures. The location and setting of gold, base metal and rare earth element deposits across the orogen are closely linked to the major lithospheric-scale structures, highlighting their importance to fluid flow within mineral systems by the transport of fluid and energy direct from the mantle into the upper crust.  相似文献   
138.
The U.S. has been providing national-scale estimates of forest carbon (C) stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC) reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon) and spatial scales (e.g., sub-county to biome). Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood) is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations). In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area), with weaker agreement for detrital pools (e.g., standing dead trees). Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC) and regional scales (e.g., Reducing Emissions from Deforestation and Forest Degradation projects) while allowing timely incorporation of empirical data (e.g., annual forest inventory).  相似文献   
139.
140.
This study proposes an ecological mechanism for the terminal Pleistocene population collapse and subsequent extinction of North American megafauna. Observations of modern ecosystems indicate that feedback mechanisms between plant nutrient content, nitrogen cycling, and herbivore–plant interactions can vary between a nutrient accelerating mode favoring increased herbivore biomass and a nutrient decelerating mode characterized by reduced herbivore biomass. These alternate modes are determined largely by plant nitrogen content. Plant nitrogen content is known to be influenced by atmospheric CO2 concentrations, temperature, and precipitation. It is argued that Lateglacial climate change, particularly increases in atmospheric CO2, shifted herbivore–ecosystem dynamics from a nutrient accelerating mode to a nutrient decelerating mode at the end of the Pleistocene, leading to reduced megafaunal population densities. An examination of Sporormiella records – a proxy for megaherbivore biomass – indicates that megafaunal populations collapsed first in the east and later in the west, possibly reflecting regional differences in precipitation or vegetation structure. The fortuitous intersection of the climatically driven nitrogen sink, followed by any one or combination of subsequent anthropogenic, environmental, or extra-terrestrial mechanisms could explain why extinctions took place at the end of the Pleistocene rather than during previous glacial–interglacial cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号