Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient (R2) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in R2. Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in R2 compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO.
In this study, we have evaluated and compared prediction capability of Bagging Ensemble Based Alternating Decision Trees (BADT), Logistic Regression (LR), and J48 Decision Trees (J48DT) for landslide susceptibility mapping at part of the Uttarakhand State (India). The BADT method has been proposed in the present study which is a novel hybrid machine learning ensemble approach of bagging ensemble and alternating decision trees. The J48DT is a relative new machine learning technique which has been applied only in few landslide studies, and the LR is known as a popular landslide susceptibility model. For the model studies, a spatial database of 930 historical landslide events and 15 landslide affecting factors have been collected and analyzed. This database has been used to build and validate the landslide models namely BADT, LR and J48DT Predictive capability of these models has been validated and compared using statistical analyzing methods and Receiver Operating Characteristic (ROC) curve. Results show that these three landslide models (BADT, LR and J48DT) performed well with the training dataset. However, using the validation dataset the BADT model has the highest prediction capability, followed by the LR model, and the J48DT model, respectively. This indicates that the BADT is a promising method which can be used for landslide susceptibility assessment also for other landslide prone areas. 相似文献
The main objective of the study was to evaluate and compare the overall performance of three methods, frequency ratio (FR), certainty factor (CF) and index of entropy (IOE), for rainfall-induced landslide susceptibility mapping at the Chongren area (China) using geographic information system and remote sensing. First, a landslide inventory map for the study area was constructed from field surveys and interpretations of aerial photographs. Second, 15 landslide-related factors such as elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to faults, distance to rivers, distance to roads, landuse, NDVI, lithology and rainfall were prepared for the landslide susceptibility modelling. Using these data, three landslide susceptibility models were constructed using FR, CF and IOE. Finally, these models were validated and compared using known landslide locations and the receiver operating characteristics curve. The result shows that all the models perform well on both the training and validation data. The area under the curve showed that the goodness-of-fit with the training data is 79.12, 80.34 and 80.42% for FR, CF and IOE whereas the prediction power is 80.14, 81.58 and 81.73%, for FR, CF and IOE, respectively. The result of this study may be useful for local government management and land use planning. 相似文献
In this study, the spatial prediction of rainfall-induced landslides at the Pauri Gahwal area, Uttarakhand, India has been done using Aggregating One-Dependence Estimators (AODE) classifier which has not been applied earlier for landslide problems. Historical landslide locations have been collated with a set of influencing factors for landslide spatial analysis. The performance of the AODE model has been assessed using statistical analyzing methods and receiver operating characteristic curve technique. The predictive capability of the AODE model has also been compared with other popular landslide models namely Support Vector Machines (SVM), Radial Basis Function Neural Network (ANN-RBF), Logistic Regression (LR), and Naïve Bayes (NB). The result of analysis illustrates that the AODE model has highest predictability, followed by the SVM model, the ANN-RBF model, the LR model, and the NB model, respectively. Thus AODE is a promising method for the development of better landslide susceptibility map for proper landslide hazard management. 相似文献
Natural Resources Research - In this paper, we developed a novel hybrid model ICA–XGBoost for estimating blast-produced ground vibration in a mine based on extreme gradient boosting (XGBoost)... 相似文献
Natural Resources Research - Blast-induced ground vibration (GV) is a hazardous phenomenon in open-pit mines, and it has unquestionable effects, such as slope instability, deformation of... 相似文献
Geological wonders have been generally known as natural wonderful products. Resulted from geological processes, geological wonders are diverse in size that have geoheritage values that should be protected from damaging of substance, form and natural development. In a large scale, geological wonders can be geoheritage areas, containing several geodiversity elements that are geologically important or in a smaller scale, they can be geosites of heritage values (or geoheritage sites). In the delimitation of areas, having geoheritage values and the establishment of geoparks, the first thing is to recognise them as geosites and geoheritage areas that indicate great geological values. Besides the Ha Long bay, the world natural heritage with its outstanding aesthetic and geological values, the Cat Ba islands are typical and grandeur karst landscapes formed in tropical condition. Based on the geodiversity elements with their own geoheritage values on aesthetics, uniqueness and grandeur in the Cat Ba islands, the authors have recognised three geoheritage areas: the south cape of the Cat Ba embayment, Tung Gau (shelter), and the Lan Ha bay. Sites where Brachiopods, Crinoids and Tetracorals are exposed on the way through the island are considered as palaeontological geosites. The folds of limestone layers in the northern part of Cat Co 3 beach, with typical turbidite structures in carbonate formations are considered as a lithological geosite. The Devonian-Carboniferous boundary near the Cat Co 3 beach is regarded as a stratigraphical geosite while Que Kem and Turtle islands, etc. are considered as geomorphological geosites. 相似文献