排序方式: 共有32条查询结果,搜索用时 15 毫秒
31.
This study clarified the effects of measurement noise on identification of soil properties from vertical array observation of seismic waves. In order to evaluate the sensitivity of the unknown parameter with respect to error caused by noise, the amplitude of a transfer function was used to formulate the evaluation function in the frequency domain. Also the logarithmic amplitude was used to formulate the evaluation function and compare the sensitivity between the two types of amplitude expressions. A numerical experiment, based on a simple-structured ground model, showed that these evaluation functions produced satisfactory results which were in good agreement with identified results obtained by the measurement data contaminated by artificially generated errors. The present theory, when applied to actual earthquake records, proved useful in evaluating the influence of the non-linearity of soil characteristics. © 1997 by John Wiley & Sons, Ltd. 相似文献
32.
Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth. 相似文献