首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   6篇
  国内免费   8篇
测绘学   10篇
大气科学   23篇
地球物理   92篇
地质学   69篇
海洋学   65篇
天文学   49篇
综合类   3篇
自然地理   15篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2014年   9篇
  2013年   8篇
  2012年   9篇
  2011年   18篇
  2010年   12篇
  2009年   18篇
  2008年   21篇
  2007年   27篇
  2006年   26篇
  2005年   10篇
  2004年   20篇
  2003年   6篇
  2002年   12篇
  2001年   9篇
  2000年   9篇
  1999年   10篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   6篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有326条查询结果,搜索用时 31 毫秒
71.
通过分析发生在日本周边深源地震的宽频带波形资料,估计了日本列岛下的660km不连续面(d660)的深度变化。许多宽频带波形记录到了在d660顶部发生反射的sScS的后续波。sScS后续波与sScS间的到时差包含了震中与台站下方的d660深度变化的信息。我们成功地检测到这两种震相并将其分离,到目前为止还没有这方面研究的报道。我们由sScS与其后续波的到时差来求每个震中与记录台站下的d660的深度变化。研究结果显示,西部日本下的d660较深(大于660km),这可能是滞留在地幔转换带中的冷的太平洋板块造成的。在日本中部,d660变深,显然这不是太平洋板块本身造成的,因为日本中部已经位于该滞留板片的东部。日本东北部下的d660变得较浅,这可能是太平洋板片形状变化或下地幔热物质上涌形成局部热异常造成的。  相似文献   
72.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   
73.
The Miocene northeast Honshu magmatic arc, Japan, formed at a terrestrial continental margin via a stage of spreading in a back‐arc basin (23–17 Ma) followed by multiple stages of submarine rifting (19–13 Ma). The Kuroko deposits formed during this period, with most forming during the youngest rifting stage. The mode of magma eruption changed from submarine basalt lava flows during back‐arc basin spreading to submarine bimodal basalt lava flows and abundant rhyolitic effusive rocks during the rifting stage. The basalts produced during the stage of back‐arc basin spreading are geochemically similar to mid‐ocean ridge basalt, with a depleted Sr–Nd mantle source, whereas those produced during the rifting stage possess arc signatures with an enriched mantle source. The Nb/Zr ratios of the volcanic rocks show an increase over time, indicating a temporal increase in the fertility of the source. The Nb/Zr ratios are similar in basalts and rhyolites from a given rift zone, whereas the Nd isotopic compositions of the rhyolites are less radiogenic than those of the basalts. These data suggest that the rhyolites were derived from a basaltic magma via crystal fractionation and crustal assimilation. The rhyolites associated with the Kuroko deposits are aphyric and have higher concentrations of incompatible elements than do post‐Kuroko quartz‐phyric rhyolites. These observations suggest that the aphyric rhyolite magma was derived from a relatively deep magma chamber with strong fractional crystallization. Almost all of the Kuroko deposits formed in close temporal relation to the aphyric rhyolite indicating a genetic link between the Kuroko deposits and highly differentiated rhyolitic magma.  相似文献   
74.
Anthropogenic aerosols in the lower troposphere increase the absorption and scattering of solar radiation by air and clouds, causing a warmer atmosphere and a cooler surface. It is suspected that these effects contribute to slow down the hydrological cycle. We conducted a series of numerical experiments using a limited area atmospheric model to understand the impacts of aerosol radiative forcing on the rainfall process. Experiments with different radiative conditions under an idealized setting revealed that increasing atmospheric forcing and decreasing surface forcing of radiation causes reductions in rainfall. There was no relationship of top of the atmosphere forcing to the rainfall yield. The model was then used to simulate a domain covering southern part of Sri Lanka, over for the period from November 2002 to July 2003. For a given radiative forcing, instances with lower rainfall yields showed larger fractional reductions in rainfall. The trends in seasonal rainfall observed over the site in past 30 years in a different study confirms this finding. We conclude that the negative impact of increase of anthropogenic aerosols on rainfall would be more severe on regions and seasons with lower rainfall yields. The consequences of this problem on the industries that critically depend on well-distributed rainfall like non-irrigated agriculture and on the general livelihood of societies in low-rain areas can be serious.  相似文献   
75.
Subduction of lithosphere, involving surficial materials, into the deep mantle is fundamental to the chemical evolution of the Earth. However, the chemical evolution of the lithosphere during subduction to depth remains equivocal. In order to identify materials subjected to geological processes near the surface and at depths in subduction zones, we examined B and Li isotopes behavior in a unique diamondiferous, K-rich tourmaline (K-tourmaline) from the Kokchetav ultrahigh-pressure metamorphic belt. The K-tourmaline, which includes microdiamonds in its core, is enriched in 11B relative to 10B (δ11B = −1.2 to +7.7) and 7Li relative to 6Li (δ7Li = −1.1 to +3.1). It is suggested that the K-tourmaline crystallized at high-pressure in the diamond stability field from a silicate melt generated at high-pressure and temperature conditions of the Kokchetav peak metamorphism. The heavy isotope signature of this K-tourmaline differs from that of ordinary Na-tourmalines in crustal rocks, enriched in the light B isotope (δ11B = −16.6 to −2.3), which experienced isotope fractionation through metamorphic dehydration reactions. A possible source of the heavy B-isotope signature is serpentine in the subducted lithospheric mantle. Serpentinization of the lithospheric mantle, with enrichment of heavy B-isotope, can be produced by normal faulting at trench-outer rise or trench slope regions, followed by penetration of seawater into the lithospheric mantle. Serpentine breakdown in the lithospheric mantle subducted in subarc regions likely provided fluids with the heavy B-isotope signature, which was acquired during the serpentinization prior to subduction. The fluids could ascend and cause partial melting of the overlying crustal layer, and the resultant silicate melt could inherit the heavy B-isotope signature. The subducting lithospheric mantle is a key repository for modeling the flux of fluids and associated elements acquired at a near the surface into the deep mantle.  相似文献   
76.
Whole animal respiration rates (R) of myctophid fishes which migrate up to the surface at night were estimated using enzyme activities of the electron-transport-system (ETS). The fish, currently unsusceptible to laboratory experimentation, were caught at sea and stored frozen at –20°C for 14–17 days prior to enzyme assay. Supplemental tests on two tropical marine fishes (gobies and poma-centrids) showed no measurable loss of ETS activity during storage for up to 36 d at –20°C. The ETS/R ratio for gobies and pomacentrids was 1.61. Respiration rates of myctophid fishes estimated using this ETS/R ratio ranged from 17.7 to 453µl O2 individual–1 hr–1 for specimens weighing 26–1101 mg wet weight atin situ temperature of 24–27°C. The relationship between the respiration rate standardized to a temperature of 20°C (R:µl O2 individual–1hr–1) and wet weight (WW: mg) of myctophid fishes was expressed asR=0.790 WW0.84 (r=0.964,n=27). This relationship does not differ appreciably from the respiration rates of other marine fishes calculated from Winberg's equation.  相似文献   
77.
The abundance of a scyphomedusae, Aurelia aurita and Chrysaora melanaster, and a ctenophore, Bolinopsis mikado, in Tokyo Bay was investigated from 1995 to 1997. Aurelia aurita appeared throughout the year with a peak in abundance occurring from spring to summer. The average abundance and biomass during this period for the three successive years was 4.8, 43.8 and 3.2 ind. m−2, and 1.02, 10.0 and 0.42 gC m−2, respectively. The values in 1995 and 1997 were comparable with those previously reported for A. aurita abundance from 1990 to 1992. Values were very high in 1996, but the size composition of the bell diameter did not differ from other years, which suggested the absence of food limitation for A. aurita in 1996. C. melanaster was scarce over the survey period (<1.0 ind. m−2) while Bolinopsis mikado was more abundant during September to December, with maximum values of 172 ind. m−2 and 0.33 gC m−2 observed in December 1997. The weight-specific clearance rate for A. aurita on zooplankton (mainly copepods and their nauplii) was 0.16 ± 0.05 lgWW−1 h−1 (n = 13). Population clearance rate peaked from spring to summer, with average levels of 14.2%, 162% and 5.0% day−1 obtained from spring to summer for respective years. Population clearance rates for B. mikado, calculated based on minimum carbon requirements, was 7.1% day−1 in December 1997. Consequently, the trophic role of gelatinous zooplankton as predators in Tokyo Bay is important all the year round, considering the high impact of A. aurita from spring to summer and B. mikado from autumn to winter.  相似文献   
78.
Many investigations about the direct measurements of velocities to clarify the internal mechanism of the breaker have been carried out as a result of recent progress in the measuring techniques.This research attempts to clarify the breaking wave transformation system on a slope by an experiment and numerical analysis. In an experiment, the velocities in the surf zone were measured directly using an electromagnetic current meter, and the space distribution characteristic of the vorticity ω = (∂u/∂y − ∂u/∂x) and the skewness γ = (∂u/∂y + ∂u/∂x) were examined. Also, occurrence situations of the vortices at the time of water mass inrush were measured by video tape recorder (VTR) image processing. However, because the breaker is a violent phenomenon that is entrained with plentiful bubbles, the extent to which we can clarify breaker transformation in experiments is limited. Numerical simulations are substituted for experiments as a method to clarify breaker transformation.In numerical analysis, finite amplitude wave analysis based on the potential theory (non-viscous fluid) is possible before wave breaking; however, the analysis must take into account the viscous fluid after breaking. So, we use the Reynolds equations to develop a numerical simulation system of the breaker transformation on a sloping bottom. The numerical energy dissipation model of the breaker was compared to the experimental results, and a modified Simplified Marker and Cell (SMAC) method is presented. The internal characteristics of the breaker transformation are described using application examples.  相似文献   
79.
Ishiwatari  R.  Hirakawa  Y.  Uzaki  M.  Yamada  K.  Yada  T. 《Journal of Oceanography》1994,50(2):179-195
Organic geochemical study of bulk organic matter (OM), hopanoid hydrocarbon and normal hydrocarbon (C23C35) was conducted for a 936-cm-long sediment core sample from the Oki Ridge of the Japan Sea (Core KH-79-3, C-3; 37°03.5 N, 134°42.6E, water depth 935 m). Stable carbon isotopic ratios were also measured for both bulk OM and individual hydrocarbons. The following results were obtained: (1) The weight ratios of total organic carbon to total nitrogen range from 6.2 to 9.4 in the core. The 13C values of bulk OM range from –25.1–20.7%.. The 13C values of OM in the sections of 140190 cm are lower (–25–24) than those in the other sections (–23–21). This result indicates that OM in the core except for the 140190 cm sections is essentially of marine origin. (2) The 13C value of diploptene (a hopanoid hydrocarbon) in the last glacial maximum (LGM), is –66.3 (vs. PDB), which indicates it originating in methanotrophic bacteria. This result provides evidence to support for the previous ideas (Oba et al., 1980, 1984; Masuzawa and Kitano, 1984) that the bottom waters in the Japan Sea were anoxic in LGM. (3) Long chain (C23C35) n-alkanes of higher-plant wax origin were found throughout the core. Their concentration is high in 140190 cm in depth, suggesting that eolian dust load was high in LGM. (4) The n-alkane/TOC ratio increases with decreasing 13C values of bulk OM. This result indicates that the load of terrestrial (probably eolian dust-derived) OM to the Japan Sea became higher in colder climates. (5) The CPI values of long-chain n-alkanes are different in different 13O stages of paleoclimate, probably reflecting variations in species of terrestrial higher plants as a result of climatological adaptations.  相似文献   
80.
An attempt to the approximate figures of seasonal distribution of solar energy reached to and penetrated in the water of the oceans, as a preliminary step to the estimation of primary production in the oceans from the optical point, was performed in the Indian Ocean, North Pacific Ocean and Antarctic Ocean on the same lines in the part III. In consequence, the total amount of solar energy for the year in each depth showed marked differences in each zone of the oceans as illustrated in Fig. 5. By way of example, it could be said that underwater solar energy already came to 33.4 Kg·cal/cm2·year in 10 m deep in the equator of Indian Ocean and was 54% of that, in the Kuroshio region of the North Pacific Ocean, 44% in the Sub-Antarctic zone, 13% in the Antarctic zone and 6% in the Antarctic Convergence zone, respectively. Besides, on the assumption that a lower limit of the photic zone is marked by the depth here underwater surface solar energy is reduced to 1% or 5g·cal/cm2·day, the ratio of the total photic zone for the year in unit area of sea surface was approximately 100∶80∶60∶25 or 100∶75∶50∶20 in the equator of the Indian Ocean, Kuroshio region, Sub-Antarctic zone, and Antarctic and Antarctic Convergence zones, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号