首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
地球物理   105篇
  2021年   2篇
  2018年   1篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有105条查询结果,搜索用时 265 毫秒
71.
The nature of tsunami sources is reviewed, including source duration, displacement amplitudes, and areas and volumes of selected past earthquakes, slumps and slides that have or may have generated a tsunami. This review shows that the velocity of spreading of submarine slides and slumps (1–100 m/s) can be comparable to the long wavelength tsunami velocity (30–140 m/s for water depth 100<h<2000 m). In contrast, typical velocities of spreading dislocations during most earthquakes are one order of magnitude larger (2–3 km/s). Other significant differences between earthquake and slide and slump sources are that the balance of the total uplifted material in the case of slides is essentially zero, while for earthquakes it can be considerable, and that the vertical displacements for slides and slumps, per unit area of their horizontal projection, can be orders of magnitude larger than during earthquakes. This can result in high concentrations of the total change in the potential energy of fluid, above the source, over much smaller areas than during earthquakes.  相似文献   
72.
Tsunami generated by submarine slumps and slides are investigated in the near-field, using simple source models, which consider the effects of source finiteness and directivity. Five simple two-dimensional kinematic models of submarine slumps and slides are described mathematically as combinations of spreading constant or slopping uplift functions. Tsunami waveforms for these models are computed using linearized shallow water theory for constant water depth and transform method of solution (Laplace in time and Fourier in space). Results for tsunami waveforms and tsunami peak amplitudes are presented for selected model parameters, for a time window of the order of the source duration.The results show that, at the time when the source process is completed, for slides that spread rapidly (cR/cT≥20, where cR is the velocity of predominant spreading), the displacement of the free water surface above the source resembles the displacement of the ocean floor. As the velocity of spreading approaches the long wavelength tsunami velocity the tsunami waveform has progressively larger amplitude, and higher frequency content, in the direction of slide spreading. These large amplitudes are caused by wave focusing. For velocities of spreading smaller than the tsunami long wavelength velocity, the tsunami amplitudes in the direction of source propagation become small, but the high frequency (short) waves continue to be present. The large amplification for cR/cT1 is a near-field phenomenon, and at distances greater than several times the source dimension, the large amplitude and short wavelength pulse becomes dispersed.A comparison of peak tsunami amplitudes for five models plotted versus L/h (where L is characteristic length of the slide and h is the water depth) shows that for similar slide dimensions the peak tsunami amplitude is essentially model independent.  相似文献   
73.
74.
This paper presents a summary of uncorrected peak ground accelerations recorded during the Northridge, California, earthquake of 17 January 1994 and a preliminary analysis of these data. The presented contours of recorded accelerations agree well with observed patterns of damage. The paper also addresses the issue of how ‘unusual’ and ‘unexpected’ the recorded accelerations are relative to earlier predictions.  相似文献   
75.
A brief review of proposed correlations between peak accelerations and earthquake magnitude and distance has been presented. It has been found that most investigators agree favourably on what should be the amplitude of peak accelerations for the distance range between about 20 and 200 km. For distances less than 20 km, there is significant disagreement in the predicted peak amplitudes, reflecting the lack of data there and the uncertainties associated with the extrapolation. Correlations of peak accelerations, peak velocities and peak displacements with earthquake magnitude, epicentral distance and the geologic conditions of the recording sites have been presented for 187 accelerograms recorded during 57 earthquakes. This data set describes strong earthquake ground motion in the Western United States during the period from 1933 to 1971. For large earthquakes, dependence of peak acceleration, velocity and displacement amplitudes on earthquake magnitude seems to be lost. This suggests that the amplitudes of strong ground motion close to a fault are scaled primarily by the maximum dislocation amplitudes and the stress drop, rather than the overall ‘size’ of an earthquake as measured by magnitude. The influence of geologic conditions at the recording station seems to be of minor importance for scaling peak accelerations, but it becomes noticeable for the peaks of velocity and even more apparent for the peaks of displacement.  相似文献   
76.
In many parts of the world, subjectively based earthquake intensity scales similar to those of the Modified Mercalli Intensity (MMI) are applied regularly. Although the characteristics of these scales are quite similar, it is often difficult to convert an estimate of strong ground shaking measured by the MMI scale into its equivalent on other scales. In this paper, an instrumental correlation of the Japanese Intensity scale (JMA) with the MMI scale is described. Currently, one common yardstick that is available for both Japan and the United States is the statistic of peak accelerations. The correlation is done by comparing the JMA for sites where the ‘peak acceleration’ is known in Japan with the MMI for sites in the United States where the peak acceleration is also known. To ensure a direct correspondence of peak accelerations in these two countries, the peak values recorded in the U.S. are corrected by determining the peak acceleration as recorded by the Japanese accelerograph, the SMAC, while it is subjected to the excitation recorded in the United States.  相似文献   
77.
The amplitudes of digitization and processing noise in strong motion digital and analog accelerographs are discussed and compared with those for hand and automatic digitization. By finding the period bands for which the signal-to-noise ratio in recorded accelerograms is greater than one, the values for the pass-band cutoff periods for data processing are presented. The Empirical scalings for amplitudes in terms of: (1) earthquake magnitude and epicentral distance and, (2) Modified Mercalli Intensity at the recording site have been employed.  相似文献   
78.
Strong motion data of 10 controlled explosion experiments conducted in 1977 at the Lyaur testing range in the Republic of Tajikistan are revisited. The explosions were detonated in arrays, with time delay between detonation of array lines. Ground accelerations, as large as 1.6g, were recorded at 4 sites by SMA-1 accelerographs. The records were recently digitized and processed with modern accelerogram data processing software. The amplitude and spectral characteristics of these data are here compared with those of strong earthquake shaking data and other published explosion data. The comparison of the Fourier amplitude spectra with estimates by recent empirical scaling laws for strong ground motion, in the near-field of earthquakes, suggests that such explosions can offer powerful possibilities (at present forgotten and neglected) for testing of almost full-scale structures (1/2 to 1/3 scaled models). It is suggested that by going into rather than avoiding the nonlinear zone surrounding the explosions, new testing methods can be developed to simulate near-field nonlinear strong motion of soft soils, found in most metropolitan areas in the seismically active regions.  相似文献   
79.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   
80.
Seismic hazard maps of the Los Angeles metropolitan area are illustrated for normalized peak strain and for 50 years of exposure. The strain estimates are based on scaling in terms of peak ground velocity. The proportionality factor is the phase velocity with which the wave energy is propagating. A simplified seismicity model is used in which all earthquakes occur on faults represented by buried lines and in one zone of diffused seismicity. Poissonian model of earthquake occurrence is assumed. The same model was used in the 1980's to illustrate a method for microzoning of the same area for response spectral amplitudes. Maps of logarithms of normalized peak strain, cεmax, are presented for probabilities of at least one exceedance p = 0·99, 0·9, 0·5, 0·1 and 0·01. These can be used to construct site specific probability distribution functions of the normalized peak strain, cεmax. Such maps are useful for design of new and for retrofit of existing structures, sensitive to strain and differential ground motions (bridges, tunnels, pipelines, etc.).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号