首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   0篇
测绘学   1篇
大气科学   5篇
地球物理   29篇
地质学   57篇
海洋学   67篇
自然地理   25篇
  2022年   4篇
  2021年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   12篇
  2009年   13篇
  2008年   9篇
  2007年   7篇
  2006年   2篇
  2005年   8篇
  2004年   8篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
171.
Carbon isotope fractionation between coexisting calcite and graphite (C ) has been studied in metamorphosed limestones from three thermal aureoles around Cretaceous granitic bodies (i.e., Tanohata, Tono, and Senmaya aureoles) in the Kitakami Mountains, Northeast Japan. C in each aureole decreases toward the granitic bodies, and becomes virtually uniform near the sillimanite isograd for metapelites, although calcite has variable isotopic ratios reflecting the original sedimentary compositions. The relationships indicate that isotopic equilibrium has been attained in metamorphosed limestone of sillimanite grade. Estimated C at the sillimanite isograd is similar in the Tanohata and Tono aureoles, but different in the Senmaya aureole with smaller carbon isotopic fractionations. From the temperature dependence of C and the negative dP/dT of andalusite–sillimanite equilibrium, we conclude that the sillimanite isograd in the Senmaya aureole was under higher temperature and lower pressure than in the other two localities. Temperatures at the sillimanite isograd are estimated by using existing calibrations of carbon isotopic exchange between calcite and graphite, whereas pressures are estimated from carbon isotopic temperatures and the andalusite–sillimanite equilibrium (Holdaway and Mukhopadhyay 1993a). Consistency of the P–T estimates is examined in the light of phase equilibria in the pelitic system. The estimated pressures at the sillimanite isograd are at about 2.1–2.7(±0.2) kbar for the Tanohata and Tono aureoles and less than 1 kbar for the Senmaya aureole, respectively. Geobarometry of sillimanite isograd in thermal aureoles indicates a marked difference in the depth of solidification of upper crustal granitoids: the Senmaya pluton has intruded and solidified at a very shallow level of less than 4 km whereas the Tanohata and Tono plutons are more deep-seated (ca. 8–10 km). The method can also be an effective tool in studying low-pressure type metamorphism in which geothermobarometry using garnet is not always applicable.Editorial responsibility: J. Hoefs  相似文献   
172.
Effects of sphericity are commonly ignored in the lithospheric bending problem. In order to examine its effects, I solve a simple axisymmetric spherical-shell model. The full solution and the asymptotic solution are derived from the basic equations, and their relationship to the flat-plate solution is examined. For displacement, effects of sphericity are small, and use of the flat-plate solution produces results that are numerically indistinguishable from those of the spherical solution. The most significant effect of sphericity appears in the stress, in particular the normal stress along the strike direction of the trench. This stress is approximately given by Eur/R , where E is Young's modulus, ur is the vertical deformation of the shell and R is its radius of curvature. If the shell (lithosphere) is bent downwards and reaches 30 km, this stress can become about 5 kbar in the Earth. While plastic behaviour may set in under such high pressure conditions and analysis beyond elasticity theory may be required, sphericity may be a cause of large compressive stress in the trench strike direction. This stress may play an important role in forming the overall shape of the Earth's subduction zones.  相似文献   
173.
To better understand the vertical distribution of phytoplankton in the tropical and subtropical North Pacific, we used fast repetition rate fluorometry to investigate the photo-physiological condition of the phytoplankton assemblage in this region between February and March 2007. Along 155°E, between the equator and 24°N, the peak of fluorescence (F m), an indication of the deep chlorophyll maximum (DCM), was deeper than the top of the nitracline and occurred at the 2.4 ± 1.3 % (mean ± SD) light depth (relative to 0 m). The photochemical efficiency (F v/F m) and effective absorption cross-section of photosystem II (σPSII) were low at the surface but increased rapidly at depths between the top of the nitracline (40–138 m) and the DCM (70–158 m), an indication that the photo-physiological condition of the phytoplankton improved below the top of the nitracline. The depth of the maximal F v/F m [Z(F v/F m max)] was 18–32 m deeper than the DCM and corresponded to the 0.8 ± 0.2 % light depth. The values of F v/F m at the Z(F v/F m max) were 20 % higher than those at the DCM and averaged 0.48 ± 0.01. These results suggest that the phytoplankton assemblage beneath the DCM had a high potential photosynthetic performance capacity and was growing by using the very low ambient light in this region.  相似文献   
174.
A simple modification of the waveform inversion formula, based on the normal mode perturbation theory, is shown to lead to a formula for traveltime anomalies. The kernel which is derived can be used for traveltime inversion with automatic inclusion of finite frequency effects. Inversion for Earth structure with such kernels will lead to better resolution estimates than ray-theoretical traveltime inversion. Examples of kernels for transverse component seismograms are shown for direct S waves, ScS , Love waves and diffracted S waves. A measure of finite frequency effects is also proposed by comparing our formula with the one from ray theory. A quantity which should be 1 in the case of ray theory is computed for the finite frequency kernels and is shown to have deviations up to about 30 per cent from 1. Therefore, the use of ray theory for long-period body waves applies incorrect weight along a ray path and may introduce a small bias to an earth model.  相似文献   
175.
X-ray structure refinements of Ni2SiO4 and Fe2SiO4 spinels have been made as a function of temperature and heating duration by intensity measurements at high temperatures and room pressure. The lattice parameters of Ni2SiO4 spinel linearly increased with temperature up to 1,000° C. However, Fe2SiO4 spinel exhibited a nonlinear thermal expansion and was converted to a polycrystalline mixture of spinel and olivine by heating of less than one-hour at 800° C. The ratios between the octahedral and tetrahedral bond lengths D oct/D tetr and between the shared and unshared edge distances (O-O)sh/(O-O)unsh in Fe2SiO4 spinel were both much larger than those in Ni2SiO4. These ratios increase with temperature. The Fe2SiO4 spinel more readily approached a activation state which facilitated the transition to the olivine structure than the Ni2SiO4 spinel. The lattice parameter of Ni2SiO4 spinel decreased with heating period at constant temperatures of 700° C and 800° C. The parameter of the quenched sample after heating for 52 h at 700° C was smaller than that of the nonheated sample. The refinements of the site occupancies at each heating duration indicated an increase in the cation deficiency in both tetrahedral and octahedral sites. Electron microprobe analysis, however, proved no significant difference in the chemical compositions between the quenched and nonheated samples. Si and Ni atoms displaced from normally occupied spinel lattice sites are assumed to settle in vacant sites defined by the cubic close packed oxygen sublattice in a manner which preserves the electric neutrality of the bulk crystal.  相似文献   
176.
 Magnetic measurement of Fe3− x Si x O4 spinel solid solutions indicates that their Curie temperatures decrease gradually, but not linearly, from 851 to 12 K with increasing content of nonmagnetic ions Si4+. Magnetic hysteresis becomes more noticeable in solid solutions having a larger content of Fe2SiO4. Saturation magnetizations of Fe3− x Si x O4 samples increase up to x=0.357 and they are easily saturated in the field of H=0.1 T. However, magnetization of the sample of x=0.794 does not approach saturation even at high field of H=7.0 T and has a large coercive force. The Si4+ disordered distribution is confirmed to be tetr[Fe3+ 1− x + x t Si4+ x (1− t )] octa[Fe2+ 1+ x Fe3+ 1− x x t Si4+ x t ] O4 by the spin moment, which is consistent with site occupancy obtained from X-ray crystal structure refinement. Their molecular magnetizations would be expressed as M B={4(1+x)+10xtB as functions of composition parameter x and Si4+ ordering parameter t of the solid solution. The sample of x=0.794 is antiferromagnetic below the Néel temperature, mainly due to the octahedral cation interaction M OM O, while both M TM O and M OM O interactions induce a ferrimagnetic property. Concerning magnetic spin configuration, in the case of x>0.42, the lowest dɛ level becomes a singlet, resulting in no orbital angular momentum. Received: 20 April 2000 / Accepted: 11 September 2000  相似文献   
177.
178.
Sample decomposition using inverse aqua regia at elevated temperatures and pressures (e.g., Carius tube or high‐pressure asher) is the most common method used to extract highly siderophile elements (HSEs: Ru, Rh, Pd, Re, Os, Ir, Pt and Au) from geological samples. Recently, it has been recognised that additional HF desilicification is necessary to better recover HSEs, potentially contained within silicate or oxide minerals in mafic samples, which cannot be dissolved solely by inverse aqua regia. However, the abundance of interfering elements tends to increase in the eluent when conventional ion‐exchange purification procedures are applied to desilicified samples. In this study, we developed an improved purification method to determine HSEs in desilicified samples. This method enables the reduction of the ratios of isobaric and polyatomic interferences, relative to the measured intensities of HSE isotope masses, to less than a few hundred parts per million. Furthermore, the total procedural blanks are either comparable to or lower than conventional methods. Thus, this method allows accurate and precise HSE measurements in mafic and ultramafic geological samples, without the need for interference corrections. Moreover, the problem of increased interfering elements, such as Zr for Pd and Cr for Ru, is circumvented for the desilicified samples.  相似文献   
179.
180.
In order to confirm the possible existence of FeGeO3 perovskite, we have performed in situ X-ray diffraction measurements of FeGeO3 clinopyroxene at pressures up to 40 GPa at room temperature. The transition of FeGeO3 clinopyroxene into orthorhombic perovskite is observed at about 33GPa. The cell parameters of FeGeO3 perovskite are a=4.93(2) Å, b=5.06(6) Å, c=6.66(3) Å and V=166(3) Å3 at 40 GPa. On release of pressure, the perovskite phase transformed into lithium niobate structure. The previously reported decomposition process of clino-pyroxene into Fe2GeO4 (spinel)+GeO2 (rutile) or FeO (wüstite) +GeO2 (rutile) was not observed. This shows that the transition of pyroxene to perovskite is kinetically accessible compared to the decomposition processes under low-temperature pressurization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号