首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   4篇
地质学   1篇
海洋学   6篇
天文学   31篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2013年   2篇
  2011年   2篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1980年   3篇
  1977年   1篇
  1973年   1篇
排序方式: 共有47条查询结果,搜索用时 265 毫秒
41.
We examine the response of Martian climate to changes in solar energy deposition caused by variations of the Martian orbit and obliquity. We systematically investigate the seasonal cycles of carbon dioxide, water, and dust to provide a complete picture of the climate for various orbital configurations. We find that at low obliquity (15°) the atmospheric pressure will fall below 1 mbar; dust storms will cease; thick permanent CO2 caps will form; the regolith will release CO2; and H2O polar ice sheets will develop as the permafrost boundaries move poleward. At high obliquity (35°) the annual average polar temperature will increase by about 10°K, slightly desorbing the polar regolith and causing the atmospheric pressure to increase by not more than 10 to 20 mbar. Summer polar ground temperatures as high as 273°K will occur. Water ice caps will be unstable and may disappear as the equilibrium permafrost boundary moves equatorward. However, at high eccentricity, polar ice sheets will be favored at one pole over the other. At high obliquity dust storms may occur during summers in both hemispheres, independent of the eccentricity cycle. Eccentricity and longitude of perihelion are most significant at modest obliquity (25°). At high eccentricity and when the longitude of perihelion is close to the location of solstice hemispherical asymmetry in dust-storm generation and in polar ice extent and albedo will occur.The systematic examination of the relation of climate and planetary orbit provides a new theory for the formation of the polar laminae. The terraced structure of the polar laminae originates when eccentricity and/or obliquity variations begin to drive water ice off the dusty permanent H2O polar caps. Then a thin (meters) layer of consolidated dust forms on top of a dirty, slightly thicker (tens of meters) ice sheet and the composite is preserved as a layer of laminae composed predominately of water ice. Because of insolation variation on slopes, a series of poleward- and equatorward-facing scarps are formed where the edges of the laminae are exposed. Independently of orbital variations, these scarps propagate poleward both by erosion of the equatorward slopes and by deposition on the poleward slopes. Scarp propagation resurfaces and recycles the laminae forming the distinctive spiral bands of terraces observed and provides a supply of water to form new permanent ice caps. The polar laminae boundary marks the furthest eqautorward extension of the permanent H2O caps as the orbit varies. The polar debris boundary marks the furthest equatorward extension of the annual CO2 caps as the orbit varies.The Martian regolith is now a significant geochemical sink for carbon dioxide. CO2 has been irreversibly removed from the atmosphere by carbonate formation. CO2 has also benn removed by regolith adsorption. Polar temperature increases caused by orbital variations are not great enough  相似文献   
42.
We present a theory for the formation of frozen aerosol particles in the Antarctic stratosphere, the coldest region of the Earth's stratosphere. The theory is applied specifically to the formation of polar stratospheric clouds. We suggest that the condensed ices are composed primarily of nitric acid and water with small admixtures of other compounds such as H2SO4 and HCl in solid solution. Our assumed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinctions observed in the winter polar stratosphere. Physical chemistry and thermodynamic considerations suggest that at temperatures between about 200 and 185 K, stratospheric particulates are composed primarily of frozen nitric acid solutions with a composition near that of the trihydrate. Available data suggest the particles are amorphous solid solutions and not in the crystalline hydrate form. At lower temperatures (i.e., below the forst point of pure water) cirrus-like ice clouds can form.  相似文献   
43.
We hypothesize that during past epochs of high obliquity seasonal snowfields at mid-latitudes melted to produce springtime sediment-rich surface flows resulting in gully formation. Significant seasonal mid-latitude snowfall does not occur on Mars today. General Circulation Model (GCM) results, however, suggest that under past climate conditions there may have been centimeters of seasonal mid-latitude snowfall [Mischna, M.A., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. Planets 108, doi:10.1029/2003JE002051. 5062]. Gully locations have been tabulated by several researchers (e.g. [Heldmann, J.L., Mellon, M.T., 2004. Icarus 168, 285–304; Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B., 2007. Icarus 188, 324–344; Malin, M.C., Edgett, K.S., 2000. Science 288, 2330–2335]) and found to correspond to mid-latitude bands. A natural question is whether the latitudinal bands where the gullies are located correspond to areas where the ancient snowfalls may have melted, producing runoff which may have incised gullies. In this study we model thin snowpacks with thicknesses similar to those predicted by [Mischna, M.A., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. Planets 108, doi:10.1029/2003JE002051. 5062]. We model these snowpacks under past climate regimes in order to determine whether snowmelt runoff could have occurred, and whether significant amounts of warm soil (T>273 K) existed on both poleward and equatorward slopes in the regions where gullies exist. Both warm soil and water amounts are modeled because soil and water may have mixed to form a sediment-rich flow. We begin by applying the snowpack model of Williams et al. [Williams, K.E., Toon, O.B., Heldmann, J.E., Mellon, M., 2008. Icarus 196, 565–577] to past climate regimes characterized by obliquities of 35° (600 ka before present) and 45° (5.5 ma before present), and to all latitudes between 70° N and 70° S. We find that the regions containing significant snowmelt runoff correspond to the regions identified by Heldmann and Mellon [Heldmann, J.L., Mellon, M.T., 2004. Icarus 168, 285–304], Heldmann et al. [Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B., 2007. Icarus 188, 324–344] and Malin and Edgett [Malin, M.C., Edgett, K.S., 2000. Science 288, 2330–2335] as containing large numbers of gullies. We find that the snowmelt runoff (>1 mm, with equivalent rainfall rates of 0.25 mm/h) and warm soil (>1 cm depth) would have occurred on slopes within the gullied latitudinal bands. The snowfall amounts modeled are predicted to be seasonal [Mischna, M.A., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. Planets 108, doi:10.1029/2003JE002051. 5062], and our modeling finds that under the previous climate regimes there would have been meltwater present on the slopes in question for brief periods of time, on the order of days, each year. Our model provides a simple explanation for the latitudinal distribution of the gullies, and also suggests that the gullies date to times when water migrated away from the present poles to the mid-latitudes.  相似文献   
44.
Global sea-level rise poses a significant threat not only for coastal communities as development continues but also for national economies. This paper presents estimates of how future changes in relative sea-level rise puts coastal populations at risk, as well as affect overall GDP in the conterminous United States. We use four different sea-level rise scenarios for 2010–2100: a low-end scenario (Extended Linear Trend) a second low-end scenario based on a strong mitigative global warming pathway (Global Warming Coupling 2.6), a high-end scenario based on rising radiative forcing (Global Warming Coupling 8.5) and a plausible very high-end scenario, including accelerated ice cap melting (Global Warming Coupling 8.5+). Relative sea-level rise trends for each US state are employed to obtain more reasonable rates for these areas, as long-term rates vary considerably between the US Atlantic, Gulf and Pacific coasts because of the Glacial Isostatic Adjustment, local subsidence and sediment compaction, and other vertical land movement. Using these trends for the four scenarios reveals that the relative sea levels predicted by century's end could range – averaged over all states – from 0.2 to 2.0 m above present levels. The estimates for the amount of land inundated vary from 26,000 to 76,000 km2. Upwards of 1.8 to 7.4 million people could be at risk, and GDP could potentially decline by USD 70–289 billion. Unfortunately, there are many uncertainties associated with the impact estimates due to the limitations of the input data, especially the input elevation data. Taking this into account, even the most conservative scenario shows a significant impact for the US, emphasizing the importance of adaptation and mitigation.  相似文献   
45.
Measurements of NH4, NO3, urea and HCO3 uptake using 15N and 13C stable isotope tracers were undertaken in Saldanha Bay, South Africa, between January 2012 and January 2013. These studies provide the first direct measurements of N utilisation by the plankton in the bay. Primary production in the bay is driven predominantly by the advection of nutrients from the neighbouring shelf environment during upwelling events, with terrestrial and other sources providing minor inputs. New production (NO3-based) was calculated from the f-ratio and total primary production and was used to provide estimates of potential carrying capacity for bivalve culture. Despite the apparent light limitation of NO3 uptake in the winter, the availability of NO3 appeared to exert the major influence on new production throughout the year. In addition, new production was modulated by NH4 availability as shown by the suppression of NO3 uptake by concentrations higher than 1?1.5?mmol m?3. The estimated areal new production of 0.60?g C m?2 d?1 yielded a bay-wide annual estimate of 9 811 t C ha?1 y?1, slightly higher than previous calculations based on physical models. It is estimated that the total annual production of mussels and oysters, respectively, for a 1 000-ha cultivation area is approximately 40 000–53 000 t y?1 (mainly Mytilus galloprovincialis) and 4 600–6 000 t y?1 (Crassotrea gigas). The combined total production figures constitute only 24–31% of the surplus new production. A combined harvestable carrying capacity of 74 000–82 000 t y?1 can be calculated from this surplus. However, from a management and ecological perspective, bivalve culture should be limited to well below this theoretical maximum. Even with this constraint, there appears to be considerable scope for expansion of bivalve farming over the modest, present levels with little jeopardy to ecological integrity.  相似文献   
46.
Near-infrared brightness temperature contrasts observed on the night side of Venus indicate variations in the size and distribution of particles in the lower and middle cloud decks. McGouldrick and Toon [McGouldrick, K., Toon, O.B., 2007. Icarus 191, 1-24] have shown that these changes can be explained by large-scale dynamics; in particular, that downdrafts may produce optical depth “holes” in the clouds. The lifetimes of these holes are observed to be moderately short, on the order of ten days. Here, we explore a simple model to better understand this lifetime. We have coupled a microphysical model of the Venus clouds with a simple, two-dimensional (zonal, vertical) kinematical transport model to study the effects of the zonal flow on the lifetime of the holes in the clouds. We find that although wind shear may be negligible within the cloud itself, the shear that is present near the top and the bottom of the statically unstable cloud region can lead to changes in the radiative-dynamical feedback which ultimately lead to the dissipation of the holes.  相似文献   
47.
In the central North Sea ‘Gannet‐A’ field, a 50 ft oil rim is overlain by a gas cap of variable thickness. Oil is produced from horizontal wells which initially produced dry oil, but as the field became more mature, a significant water cut was seen in several wells. A dedicated 4D seismic monitor survey was acquired in order to assess the remaining distribution of oil reserves. By forward modelling the synthetic seismic response to parameters such as contact movement and residual saturations (using 2D and 3D wedge models), and comparing the results with real seismic data, we are able to decipher the contact movements across the field. It is shown that, in one part of the field, the increased water cut is caused primarily by the vertical displacement of the entire oil rim into the initial gas cap. This oil‐rim displacement produces a very different 4D seismic response from the case of a static gas–oil contact and rising oil–water contact (normal production). As a result of these observations, we are able to optimize field production by both re‐perforation of existing wells and by drilling sidetracks into the displaced rim: a brown‐field development opportunity that might otherwise be missed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号