首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   18篇
  国内免费   6篇
测绘学   8篇
大气科学   31篇
地球物理   144篇
地质学   117篇
海洋学   49篇
天文学   67篇
综合类   5篇
自然地理   38篇
  2023年   2篇
  2021年   5篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   9篇
  2016年   20篇
  2014年   11篇
  2013年   16篇
  2012年   10篇
  2011年   26篇
  2010年   14篇
  2009年   18篇
  2008年   31篇
  2007年   30篇
  2006年   30篇
  2005年   20篇
  2004年   25篇
  2003年   15篇
  2002年   13篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1995年   9篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   8篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有459条查询结果,搜索用时 593 毫秒
191.
We examined spatial and temporal variations in precipitation measured during summer season between 1976 and 2007 for 28 stations located in mountain areas across Japan using the amount of precipitation (Pr), the mean depth of precipitation events (η), and the inverse of the mean interval times (λ). We obtained positive correlations between the period mean Pr (Pr ) and the period mean η ( ) and between Pr and the period mean λ ( ) for the 28 stations. Pr was more strongly related to than to , indicating the spatial variations in Pr that are primarily related to the variations in . In addition, Pr was more strongly related to η than to λ for most stations on the basis of data for 1976–2007, indicating that the year‐to‐year variations in Pr are primarily related to η. We also examined temporal trends in Pr, η and λ for 1976–2007 and found no systematic trends for 23 of the 28 stations, suggesting long‐term trends that are not common in mountain areas of Japan. The relationships between Pr and and between Pr and η presented in this study enable us to generate a temporal precipitation distribution pattern based on only Pr and Pr data, respectively. Furthermore, probabilistic stochastic hydrological models require precipitation characteristics as input; thus, this study contributes to the determination of hydrological cycles and their possible future changes in Japanese mountain areas and therefore to water resource management. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
192.
The Itaiacoca Belt is a sequence of metavolcanic and metasedimentary rocks that crop out east of Paraná and southeast of São Paulo states, in southern Brazil.This geologic–geochronologic study supports division of the Itaiacoca Belt into two major lithologic sequences. The older is a carbonate platform sequence (dolomitic meta-limestones/metamarls/calc-phyllites/carbonate phyllites) with minimum deposition ages related to the end of the Mesoproterozoic/beginning of the Neoproterozoic (1030–908 Ma:U–Pb, zircon of metabasic rocks). The younger sequence contains mainly clastics deposits (meta-arkoses/metavolcanics/metaconglomerates/metapelites) with deposition ages related to the Neoproterozoic (645–628 Ma:U–Pb,zircon of metavolcanic rocks). These ages are quite close to K–Ar ages (fine fraction) of the 628–610 Ma interval, associated with metamorphism and cooling of the Itaiacoca Belt.The contact between the dolomitic meta-limestones and meta-arkoses is marked by intense stretching and high-angle foliation, suggesting that the discontinuity between these associations resulted from shearing. It is proposed here that the term Itaiacoca Sequence, should represent the dolomitic meta-limestones, and the term Abapã Sequence represents the meta-arkoses/metavolcanics/phyllites. In a major tectonic context, these periods are related to the break-up of Rodinia Supercontinent (1030–908 Ma) and the amalgamation of the Gondwana Supercontinent (645–628 Ma).  相似文献   
193.
Southern India occupies a central position in the Late Neoproterozoic–Cambrian Gondwana supercontinent assembly. The Proterozoic mosaic of southern India comprises a collage of crustal blocks dissected by Late Neoproterozoic–Cambrian crust-scale shear/suture zones. Among these, the Palghat–Cauvery Suture Zone (PCSZ) has been identified as the trace of the Cambrian suture representing Mozambique Ocean closure during the final phase of amalgamation of the Gondwana supercontinent. Here we propose a model involving Pacific-type orogeny to explain the Neoproterozoic evolution of southern India and its final amalgamation within the Gondwana assembly. Our model envisages an early rifting stage which gave birth to the Mozambique Ocean, followed by the initiation of southward subduction of the oceanic plate beneath a thick tectosphere-bearing Archean Dharwar Craton. Slices of the ocean floor carrying dunite–pyroxenite–gabbro sequence intruded by mafic dykes representing a probable ophiolite suite and invaded by plagiogranite are exposed at Manamedu along the southern part the PCSZ. Evidence for the southward subduction and subsequent northward extrusion are preserved in the PCSZ where the orogenic core carries high-pressure and ultrahigh-temperature metamorphic assemblages with ages corresponding to the Cambrian collisional orogeny. Typical eclogites facies rocks with garnet + omphacite + quartz and diagnostic ultrahigh-temperature assemblages with sapphirine + quartz, spinel + quartz and high alumina orthopyroxene + sillimanite + quartz indicate extreme metamorphism during the subduction–collision process. Eclogites and UHT granulites in the orogenic core define PT maxima of 1000 °C and up to 20 kbar. The close association of eclogites with ultramafic rocks having abyssal signatures together with linear belts of iron formation and metachert in several localities within the PCSZ probably represents subduction–accretion setting. Fragments of the mantle wedge were brought up through extrusion tectonics within the orogenic core, which now occur as suprasubduction zone/arc assemblages including chromitites, highly depleted dunites, and pyroxene bearing ultramafic assemblages around Salem. Extensive CO2 metasomatism of the ultramafic units generated magnesite deposits such as those around Salem. High temperature ocean floor hydrothermal alteration is also indicated by the occurrence of diopsidite dykes with calcite veining. Thermal metamorphism from the top resulted in the dehydration of the passive margin sediments trapped beneath the orogenic core, releasing copious hydrous fluids which moved upward and caused widespread hydration, as commonly preserved in the Barrovian amphibolite facies units in the PCSZ. The crustal flower structure mapped from PCSZ supports the extrusion model, and the large scale north verging thrusts towards the north of the orogenic core may represent a fold-thrust belt. Towards the south of the PCSZ is the Madurai Block where evidence for extensive magmatism occurs, represented by a number of granitic plutons and igneous charnockite massifs of possible tonalite–trondhjemite–granodiorite (TTG) setting, with ages ranging from ca. 750–560 Ma suggesting a long-lived Neoproterozoic magmatic arc within a > 200 km wide belt. All these magmatic units were subsequently metamorphosed, when the Pacific-type orogeny switched over to collision-type in the Cambrian during the final phase of assembly of the Gondwana supercontinent. One of the most notable aspects is the occurrence of arc magmatic rocks together with high P/T rocks, representing the deeply eroded zone of subduction. The juxtaposition of these contrasting rock units may suggest the root of an evolved Andean-type margin, as in many arc environments the roots of the arc comprise ultramafic/mafic cumulates and the felsic rocks represent the core of the arc. The final phase of the orogeny witnessed the closure of an extensive ocean — the Mozambique Ocean — and the collisional assembly of continental fragments within the Gondwana supercontinent amalgam. The tectonic history of southern India represents a progressive sequence from Pacific-type to collision-type orogeny which finally gave rise to a Himalayan-type Cambrian orogen with characteristic magmatic, metasomatic and metamorphic factories operating in subduction–collision setting.  相似文献   
194.
The isolate, Pesudoalteromonas sp. TBT1, could grow to overcome the toxicity of tributyltin chloride (TBTCl) up to 30 microM in the absence of Cl(-) in the medium until the cells reached an exponential phase of growth. The viability, however, was reduced after the cells reached a stationary phase. The degradation products, such as dibutyltin (DBT) and monobutyltin (MBT), were not detected in the growth medium, indicating that the isolate has no ability to degrade TBT into less toxic DBT and MBT. Up to about 10(7.5) TBT molecules were adsorbed by a single cell. The observation of morphological changes with an electron microscope showed that the cell surface became wrinkled after exposure to the lethal concentration of 10 mM TBTCl. These results indicate that the resistance of the isolate toward the toxicity of TBTCl is not related to the unique cell surface, which seems to play an important role in preventing the diffusion of TBTCl into the cytoplasm.  相似文献   
195.
The isolate, Pesudoalteromonas sp. TBT1, could grow to overcome the toxicity of tributyltin chloride (TBTCl) up to 30 μM in the absence of Cl in the medium until the cells reached an exponential phase of growth. The viability, however, was reduced after the cells reached a stationary phase. The degradation products, such as dibutyltin (DBT) and monobutyltin (MBT), were not detected in the growth medium, indicating that the isolate has no ability to degrade TBT into less toxic DBT and MBT. Up to about 107.5 TBT molecules were adsorbed by a single cell. The observation of morphological changes with an electron microscope showed that the cell surface became wrinkled after exposure to the lethal concentration of 10 mM TBTCl. These results indicate that the resistance of the isolate toward the toxicity of TBTCl is not related to the unique cell surface, which seems to play an important role in preventing the diffusion of TBTCl into the cytoplasm.  相似文献   
196.
We analyzed gravity data obtained in Juneau and global positioning system (GPS) data obtained from three PBO sites in southeastern Alaska (SE-AK), which are part of a US research facility called ‘EarthScope’, and we compared the obtained tidal amplitudes and phases with those estimated from the predicted tides including both effects of the body tide and ocean tide. Global tide models predict the ocean tides in this region of complex coastline and bathymetry. To improve the accuracy of prediction, we developed a regional ocean tide model in SE-AK.Our comparison results suggest: (1) by taking into account the ocean tide effect, the amplitude differences between the observation and the predicted body tide is remarkably reduced for both the gravity and displacement (e.g. for the M2 constituent, 8.5–0.3 μGal, and 2.4–0.1 cm at the AB50 GPS site in Juneau in terms of the vector sum of three components of the north–south, east–west and up–down), even though the ocean tide loading is large in SE-AK. (2) We have confirmed the precise point positioning (PPP) method, which was used to extract the tidal signals from the original GPS time series, works well to recover the tidal signals. Although the GPS analysis results still contain noise due to the atmosphere and multipath, we may conclude that the GPS observation surely detects the tidal signals with the sub-centimeter accuracy or better for some of the tidal constituents. (3) In order to increase the accuracy of the tidal prediction in SE-AK, it is indispensable to improve the regional ocean tide model developed in this study, especially for the phase.  相似文献   
197.
Site amplification defined as the peak value of spectrum ratio was investigated using surface and base accelerations recorded in a number of KiK-net down-hole arrays in Japan during three major earthquakes. An important task was to determine the spectral amplifications relative to outcropping motions with the aid of the down-hole array records. Based on soil data available for individual arrays, theoretical amplifications were calculated and adjusted to coincide with the peak amplifications of the array records. A good and unique correlation was found between the peak amplifications thus obtained and S-wave velocity ratios, defined by S-wave velocity in base layer divided by average S-wave velocity , for different sites and different earthquakes. The value of was evaluated from fundamental mode frequency and the thickness of an equivalent surface layer in which peak amplification is exerted. The conventional parameter Vs30; averaged shear wave velocity in the top 30 m used in current design codes, did not correlate well with the obtained amplifications. It is suggested that may be determined not only from Vs-logging data but also from microtremor measurements.  相似文献   
198.
Nutrients from the Mississippi/Atchafalaya Rivers greatly stimulate biological production in the ‘classical’ food web on the inner shelf of the northern Gulf of Mexico. Portions of this production, especially large diatoms and zooplankton fecal pellets, sink and decompose in the bottom water, consuming oxygen and contributing to the annual development of an extensive zone of bottom water hypoxia, typically >15,000 km2 since 1993. The microbial food web is also active in the Mississippi River plume, but consists of small organisms that sink slowly. This ‘recycling’ food web has not been considered as a significant contributor to vertical flux and hypoxia. However, gelatinous zooplankton, especially pelagic appendicularians such as Oikopleura dioica, mediate the conversion of microbial web organisms to organic particles with high sinking rates. When pelagic appendicularians are abundant in coastal regions of the northern Gulf of Mexico, they stimulate the rapid vertical transfer of microbial web productivity in the surface layer, which is only 5–15 m thick in the coastal hypoxic region, to the sub-pycnocline layer that becomes hypoxic each summer. In this paper we present results from two studies examining the significance of this pathway. In both 2002 and 2004, we observed high production rates of appendicularians in coastal waters. Discarded gelatinous houses and fecal pellets from the appendicularian populations often provided more than 1 g m−2 d−1 of organic carbon for the establishment and maintenance of hypoxia in the northern Gulf of Mexico. This source of organic matter flux is especially important in regions far from the river plumes and during periods of low river discharge. Autotrophic elements of this food web are primarily supported by recycled inorganic nutrients originating in the Mississippi and Atchafalaya Rivers. Sources of dissolved organic matter (DOM) supporting the heterotrophic components of this microbial food web may include in situ production, the Mississippi/Atchafalaya Rivers, and Louisiana's coastal wetlands. If significant, the latter source provides a possible link between Louisiana's high rates of coastal land loss and the large hypoxic zone observed along the coast during summer. Both of the latter DOM sources are independent of phytoplankton production stimulated by inputs of riverine inorganic nutrients.  相似文献   
199.
In order to examine temporal variations of the surface oceanic and atmospheric fCO2 and the DIC concentration, we analyzed air and seawater samples collected during the period May 1992–June 1996 in the northwestern North Pacific, about 30 km off the coast of the main island of Japan. The atmospheric CO2 concentration has increased secularly at a rate of 1.9 ppmv yr−1, and it showed a clear seasonal cycle with a maximum in spring and a minimum late in summer, produced mainly by seasonally-dependent terrestrial biospheric activities. DIC also showed a prominent seasonal cycle in the surface ocean; the minimum and maximum values of the cycle appeared in early fall and in early spring, respectively, due primarily to the seasonally-dependent activities of marine biota and partly to the vertical mixing of seawater and the coastal upwelling. The oceanic fCO2 values were almost always lower than those of the atmospheric fCO2, suggesting that this area of the ocean acts as a sink for atmospheric CO2. Values varied seasonally, mainly reflecting seasonal changes of SST and DIC, with a secular increase at a rate of 3.7 μatm yr−1. The average values of the annual net CO2 flux between the ocean and the atmosphere calculated by using the different bulk equations ranged between −0.8 and −1.7 mol m−2yr−1, and its magnitude was enhanced and reduced late in spring and mid-summer, respectively, due mainly to the seasonally varying oceanic fCO2.  相似文献   
200.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号