首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
地球物理   15篇
地质学   6篇
海洋学   3篇
天文学   3篇
自然地理   5篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
The Holocene stalagmite FG01 collected at the Fukugaguchi Cave in Itoigawa, central Japan provides a unique high‐resolution record of the East Asian winter monsoon. Because of the climate conditions on the Japan Sea side of the Japanese islands, the volume of precipitation during the winter is strongly reflected in the stalagmite δ18O signal. Examination of the carbon isotopes and the Mg/Ca ratio of FG01 provided additional information on the Holocene climate in Itoigawa, which is characterized by two different modes separated at 6.4 ka. Dripwater composition and the correlation between the δ13C and Mg/Ca data of FG01 indicate the importance of prior calcite precipitation (PCP), a process that selectively eliminated 12C and calcium ions from infiltrating water from CO2 degassing and calcite precipitation. In an earlier period (10.0–6.4 ka), an increase in soil pCO2 associated with warming and wetting climate trends was a critical factor that enhanced PCP, and resulted in an increasing trend in the Mg/Ca and δ13C data and a negative correlation between the δ13C and δ18O profiles. A distinct peak in the δ13C age profile at 6.8 ka could be a response to an increase of approximately 10% in C4 plants in the recharge area. At 6.4 ka, the climate mode changed to another, and correlation between δ18O and δ13C became positive. In addition, a millennial‐scale variation in δ18O and pulsed changes in δ13C and Mg/Ca became distinct. Assuming that δ18O and PCP were controlled by moisture in the later period, the volume of precipitation was high during 6.0–5.2, 4.4–4.0, and 3.0–2.0 ka. In contrast, the driest interval in Itoigawa was during 0.2–0.4 ka, and broadly corresponds to the Little Ice Age.  相似文献   
32.
Supraglacial Tsho Rolpa Lake in the Nepal Himalaya has been increasing rapidly in size since the 1950s, corresponding to the mountain-glacier shrinkage after the Little Ice Age. The lake basin expansion results from the subsidence by dead-ice melt below the bottom of the lake, and the retreat of the glacier terminus. Field observations of Tsho Rolpa in 1996 revealed that the retreat of glacier terminus is connected to a wind-induced vertical circulation of surface water heated by solar radiation. In order to clarify the mechanism of the lake expansion associated with sedimentary processes, we measured bottom sedimentation rate with some sediment traps, and vertical suspended sediment concentration (SSC) and water temperature, and analyzed the grain size of suspended and trapped sediments. The sediments, mostly composed of clay-sized grains, are dominantly supplied by glacier-melt water inflow at the glacier terminus. Sedimentary processes of such fine sediment comprise: (1) suspended-sediment fallout from intrusion of horizontal currents; (2) sediment sorting by sediment-laden underflows; and (3) the debris supply from the ice collapse at the glacier terminus. The (1) and (2) processes produce the density stratification of the lake, accompanied by a pycnocline at a depth of about 27 m. The existence of the pycnocline builds up the vertical water circulation in the surface layer to enhance the glacier-melt at the terminus. With respect to the subsidence of the lake bottom, nearly molecular thermal diffusion is probably dominant near the bottom of the deepest point, which results from the kinetic-energy dissipation of sediment-laden underflows. The stable existence of the bottom turbid water throughout the year could cause continuous dead-ice melt below the lake bottom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号