首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
  国内免费   1篇
测绘学   4篇
大气科学   25篇
地球物理   18篇
地质学   17篇
海洋学   5篇
天文学   34篇
自然地理   1篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   16篇
  2013年   3篇
  2012年   6篇
  2010年   9篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   6篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
51.
Abstract— A fine‐grained dark inclusion in the Ningqiang carbonaceous chondrite consists of relatively pristine solar nebular materials and has high concentrations of heavy primordial rare gases. Trapped 36Ar concentration amounts to 6 times 10?6 cc STP/g, which is higher than that of Ningqiang host by a factor of three. Light HF‐HCl etching of the dark inclusion removed 86, 73, and 64% of the primordial 36Ar, 84Kr, and 132Xe, respectively. Thus, the majority of the noble gases in this inclusion are located in very acid‐susceptive material. Based on the elemental composition, the noble gases lost from the dark inclusion during the acid‐treatments are Ar‐rich, and the noble gases remaining in the inclusion are Q and HL gases. Transmission electron microscopy showed that the acid treatments removed thin Si, Mg, and Fe‐rich amorphous rims present around small olivine and pyroxene grains in the dark inclusion, suggesting that the Ar‐rich gases reside in the amorphous layers. A possible origin of the Ar‐rich gases is the acquisition of noble‐gas ions with a composition fractionated relative to solar abundance favoring the heavy elements by the effect of incomplete ionization under plasma conditions at 8000 K electron temperature.  相似文献   
52.
The Madden–Julian Oscillation (MJO) is the major mode of intraseasonal variability (30–60 days) in the tropics, having large rainfall impacts globally, and possibly on southern Africa. However, the latter impact is not well understood and needs to be further explored. The life cycle of the MJO, known to be asymmetric, has been nevertheless analyzed usually through methods constrained by both linearity and orthogonality, such as empirical orthogonal function analysis. Here we explore a non-linear classification method, the self-organizing map (SOM), a type of artificial neural network used to produce a low-dimensional representation of high-dimensional datasets, to capture more accurately the life cycle of the MJO and its global impacts. The classification is applied on intraseasonal anomalies of outgoing longwave radiation within the tropical region over the 1980–2009 period. Using the SOM to describe the MJO is a new approach, complimentary to the usual real-time multivariate MJO index. It efficiently captures this propagative phenomenon and its seasonality, and is shown to provide additional temporal and spatial information on MJO activity. For each node, the subtropical convection is analyzed, with a particular focus on the southern Africa region. Results show that the convection activity over the central tropical Indian Ocean is a key factor influencing the intraseasonal convective activity over the southern African region. Enhanced (suppressed) convection over the central Indian Ocean tends to suppress (enhance) convection over the southern African region with a 10-day lag by modulating the moisture transport.  相似文献   
53.
Predicting inter-catchment groundwater flow (IGF) is essential because IGF greatly affects stream water discharge and water chemistry. However, methods for estimating sub-annual IGF and clarifying its mechanisms using minimal data are limited. Thus, we quantified the sub-annual IGF and elucidated its driving factors using the short-term water balance method (STWB) for three forest headwater catchments in Japan (named here catchment A, B and As). Our previous study using the chloride mass balance indicated that annual IGF of catchment A (49.0 ha) can be negligible. Therefore, we calculated the daily evapotranspiration (ET) rate using the Priestley–Taylor expression and the 5-year water balance in catchment A (2010–2014). The sub-annual IGF of the three catchments was then calculated by subtracting the ET rate from the difference between rainfall and stream discharge during the sub-annual water balance periods selected using the STWB. The IGF rates of catchment B (7.0 ha), which is adjacent to catchment A, were positive in most cases, indicating that more groundwater flowed out of the catchment than into it, and exhibited positive linear relationships with rainfall and stream discharge. This suggested that as the catchments became wetter, more groundwater flowed out of catchment B. Conversely, the IGF rates of catchment As (5.3 ha), included in catchment A, were negative in most cases, indicating that more groundwater flowed into the catchment than out from it, and exhibited negative linear relationships with rainfall and stream discharge. Given the topography of the catchments studied, infiltration into the bedrock was the probable reason for the IGF outflow from catchment B. We hypothesized that in catchment As, the discrepancy between the actual hydrological boundary and the surface topographic boundary could have caused an IGF inflow. This study provides a useful tool for determining an IGF model structure to be incorporated into rainfall-runoff models.  相似文献   
54.
Ulysses had a “distant encounter” with Jupiter when it was within 0.8 AU of the planet during February, 2004. The passage of the spacecraft was from north to south, and observations of the Jovian radio waves were carried out for a few months from high to low latitudes (+80° to +10°) of Jupiter. The statistical study performed during this “distant encounter” event provided the occurrence characteristics of the Jovian broadband kilometric radiation (bKOM), including the high-latitude component as follows: (1) the emission intensity of bKOM was found to have a sinusoidal dependence with respect to the central meridian longitude (CML), showing a broad peak at ∼180°, (2) bKOM was preferably observed in the magnetic latitudinal range from ∼+30° to +90°, and the emission intensities at the high latitudes were found to be two times larger than that at the equatorial region, and (3) the emission intensity was controlled possibly by the sub solar longitude (SSL) of Jupiter. The intensity had a sharp peak around SSL ∼210°. A 3D ray tracing approach was applied to the bKOM in order to examine the source distribution. It was suggested that: (1) the R-X mode waves generated through the Cyclotron Maser Instability process would be unable to reproduce the intense high-latitude component of the bKOM, (2) the L-O mode, which was assumed to be generated at frequencies near the local plasma frequency, was considered to be the dominant mode for past and present observations at mid- and high-latitudinal regions, and (3) the high-latitude component of bKOM was found to have a source altitude of 0.9-1.5 Rj (Rj: Jovian radii), and to be distributed along magnetic field lines having L>10.  相似文献   
55.
Ulysses had a “distant encounter” with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses’ first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region (L>30).  相似文献   
56.
Abstract— We have investigated the kinematics of the separation of iron globules from chondrules during chondrule formation. A simple model, which assumes that the system has no angular momentum, was used to calculate the energy of a system with an iron globule and a chondrule. The energies of three different states were calculated: 1) a melted iron globule fully embedded in a melted chondrule, 2) a melted iron globule on the surface of a melted chondrule, and 3) a melted iron globule being separated from a melted chondrule. We also calculated the lowest energy shape for a melted iron globule on the surface of a melted chondrule, and compared our result with the shapes of four natural samples of chondrules and iron globules in thin sections. The shapes were calculated using an assumed value for the interface energy between the four couples of melted chondrules and the iron globules, and agree well with the natural shapes of chondrules and iron globules. The results of our calculations show that the iron globules of these four samples would be strongly bound to the surface of the melted chondrule during chondrule formation, and separation would be difficult, if the iron globules had been on the surface of precursors of these chondrules. Our results also show that if these iron globules were initially inside and transported to the surface of the melted chondrule, most of them would be ejected from the inside to outside because of surface tension forces, as long as the energy losses due to viscous dissipation when the globules pass through the surface of melted chondrules were sufficiently small. Although further improvement of the model is required, our results demonstrate that this ejection process may be responsible for the depletion of siderophile elements in natural chondrules.  相似文献   
57.
Impacts of the South China Sea Throughflow (SCST) on seasonal and interannual variations of the Indonesian Throughflow are studied by comparing outputs from ocean general circulation model (OGCM) experiments with and without the SCST. The observed subsurface maximum in the southward flow through the Makassar Strait is simulated only when the SCST, which is driven by the large-scale wind, is allowed in the model. The mean volume and heat transport by the Makassar Strait Throughflow are reduced by 1.7 Sv and 0.19 PW, respectively, by the existence of the SCST in the model. The difference is particularly remarkable during boreal winter when the SCST reaches its seasonal maximum. Furthermore, the SCST is strengthened during El Niño, leading to the weakening in the southward volume and heat transport through the Makassar Strait by 0.37 Sv and 0.05 PW, respectively. These findings from the OGCM experiments suggest that the SCST may play an important role in climate variability of the Indo-Pacific Ocean.  相似文献   
58.
Using a high-resolution ocean general circulation model forced by NCEP/NCAR reanalysis data, the interannual variability of the Guinea Dome is studied from a new viewpoint of its possible link with the Atlantic Meridional Mode (AMM), which is related to the meridional migration of the Intertropical Convergence Zone (ITCZ). The dome develops off Dakar seasonally from late spring to late fall owing to the wind-induced Ekman upwelling; its seasonal evolution is associated with the northward migration of the ITCZ. When the ITCZ is located anomalously northward (southward) from late spring to early summer, as a result of the wind-evaporation-sea surface temperature (SST) positive feedback with positive (negative) SST anomaly over the Northern Hemisphere, the dome becomes unusually strong (weak) in fall as a result of stronger (weaker) Ekman upwelling. This may contribute to the decay of the AMM. Thus, the coupled nature between the AMM and the Guinea Dome could be important in understanding, modeling, and predicting the tropical Atlantic variability.  相似文献   
59.
Abstract– Eight saponite‐rich micrometeorites with very similar mineralogy were found from the recent surface snow in Antarctica. They might have come to Earth as a larger meteoroid and broke up into pieces on Earth, because they were recovered from the same layer and the same location of the snow. Synchrotron X‐ray diffraction (XRD) analysis indicates that saponite, Mg‐Fe carbonate, and pyrrhotite are major phases and serpentine, magnetite, and pentlandite are minor phases. Anhydrous silicates are entirely absent from all micrometeorites, suggesting that their parental object has undergone heavy aqueous alteration. Saponite/serpentine ratios are higher than in the Orgueil CI chondrite and are similar to the Tagish Lake carbonaceous chondrite. Transmission electron microscope (TEM) observation indicates that serpentine occupies core regions of fine‐grained saponite, pyrrhotite has a low‐Ni concentration, and Mg‐Fe carbonate shows unique concentric ring structures and has a mean molar Mg/(Mg + Fe) ratio of 0.7. Comparison of the mineralogy to hydrated chondrites and interplanetary dust particles (IDPs) suggests that the micrometeorites are most similar to the carbonate‐poor lithology of the Tagish Lake carbonaceous chondrite and some hydrous IDPs, but they show a carbonate mineralogy dissimilar to any primitive chondritic materials. Therefore, they are a new variant of saponite‐rich micrometeorite extracted from a primitive hydrous asteroid and recently accreted to Antarctica.  相似文献   
60.
We describe the petrography and mineralogy of six CV3 carbonaceous chondrites. LAP02206, LAP02228, LAP04843, and GRA06101 are classified as oxidized Allende-like chondrites (CV3oxA). RBT04143 and QUE97186 are classified as members of the reduced subtype (CV3red). Chondrules in the CV3oxA chondrites show extensive Fe–Mg zoning. Fe-rich olivine in the rims of the CV3oxA chondrules are 16O-poor relative to Mg-rich olivine in the cores, suggesting that in addition to Fe and Mg, oxygen was exchanged between chondrules and matrix during weak thermal metamorphism. The CV3red chondrites appear to have formed through various processes. QUE97186 shows chondrule flattening with a preferred orientation, which is interpreted to have resulted from shock impact at a pressure of ~20 GPa. The post-shock residual heat (~1000 °C) is likely to be responsible for the restricted Fe/Mg ratios of matrix olivine. Based on the degree of Fe–Mg homogenization of matrix olivines, we estimate the spatial scale of the shock-heated region to be ~1 m. RBT04143 is a breccia containing many clasts of two types of lithologies: reduced-type material and very weakly altered material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号