首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
地球物理   16篇
地质学   3篇
海洋学   1篇
天文学   6篇
自然地理   4篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1989年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有30条查询结果,搜索用时 0 毫秒
21.
Predicting inter-catchment groundwater flow (IGF) is essential because IGF greatly affects stream water discharge and water chemistry. However, methods for estimating sub-annual IGF and clarifying its mechanisms using minimal data are limited. Thus, we quantified the sub-annual IGF and elucidated its driving factors using the short-term water balance method (STWB) for three forest headwater catchments in Japan (named here catchment A, B and As). Our previous study using the chloride mass balance indicated that annual IGF of catchment A (49.0 ha) can be negligible. Therefore, we calculated the daily evapotranspiration (ET) rate using the Priestley–Taylor expression and the 5-year water balance in catchment A (2010–2014). The sub-annual IGF of the three catchments was then calculated by subtracting the ET rate from the difference between rainfall and stream discharge during the sub-annual water balance periods selected using the STWB. The IGF rates of catchment B (7.0 ha), which is adjacent to catchment A, were positive in most cases, indicating that more groundwater flowed out of the catchment than into it, and exhibited positive linear relationships with rainfall and stream discharge. This suggested that as the catchments became wetter, more groundwater flowed out of catchment B. Conversely, the IGF rates of catchment As (5.3 ha), included in catchment A, were negative in most cases, indicating that more groundwater flowed into the catchment than out from it, and exhibited negative linear relationships with rainfall and stream discharge. Given the topography of the catchments studied, infiltration into the bedrock was the probable reason for the IGF outflow from catchment B. We hypothesized that in catchment As, the discrepancy between the actual hydrological boundary and the surface topographic boundary could have caused an IGF inflow. This study provides a useful tool for determining an IGF model structure to be incorporated into rainfall-runoff models.  相似文献   
22.
Spectroscopic observation of solar flares in the hard X-ray energy range, particularly the 20 ∼ 100 keV region, is an invaluable tool for investigating the flare mechanism. This paper describes the design and performance of a balloon-borne hard X-ray spectrometer using CdTe detectors developed for solar flare observation. The instrument is a small balloon payload (gondola weight 70 kg) with sixteen 10×10×0.5 mm CdTe detectors, designed for a 1-day flight at 41 km altitude. It observes in an energy range of 20−120 keV and has an energy resolution of 3 keV at 60 keV. The second flight on 24 May 2002 succeeded in observing a class M1.1 flare.  相似文献   
23.
The X-ray Telescope (XRT) of the Hinode mission provides an unprecedented combination of spatial and temporal resolution in solar coronal studies. The high sensitivity and broad dynamic range of XRT, coupled with the spacecraft’s onboard memory capacity and the planned downlink capability will permit a broad range of coronal studies over an extended period of time, for targets ranging from quiet Sun to X-flares. This paper discusses in detail the design, calibration, and measured performance of the XRT instrument up to the focal plane. The CCD camera and data handling are discussed separately in a companion paper.  相似文献   
24.
We compiled and analyzed long-term data, including chemical, physical and phytoplankton community data, for the Lake Biwa ecosystem from 1962 to 2003. Analyses on environmental data indicate that Lake Biwa had experienced intensified eutrophication (according to total phosphorus concentration) in the late 1960s and returned to a less eutrophic status around 1985, and then exhibited rapid warming and thus increased water column stability since 1990. Total phytoplankton cell volume largely followed the trend of total phosphorus concentration, albeit short-term fluctuations existed. However, phytoplankton community shifted dramatically in response to those changes of environmental states. These shifts were cause by changes in trophic status driven by phosphorus loadings and physical properties in the water column driven by warming. Moreover, most phytoplankton species did not show a strong linear correlation with environmental variables, suggesting nonlinear transitions among different states.  相似文献   
25.
We report systematic noble gas variation within a regional scale in an area that is well separated from all hotspots surrounding a remarkable ridge-ridge-ridge type triple junction—the Rodriguez Triple Junction of the Indian Ocean. We applied a newly established technique to select basaltic glass samples from the Mid-Oceanic Ridge Basalt (MORB) suite from the studied area. Samples were selected to create regular spacing along the ridge axis for investigating the magma system beneath the ridge axis. All samples show a typical isotope signature as MORB regardless of moderate contributions of an atmospheric component. Remarkably, uniform isotope ratios were found even for Ne and Ar in each segment. Such ratios had not been recognized in any magmatic system in Mid-Oceanic Ridges. Elemental abundances of samples are controlled both by mixing with the atmospheric component and by degassing. Contribution of atmospheric components is controlled strongly by a high temperature reaction caused by equilibration of dissolved noble gases between magma and seawater. Of the three models of the magma system around the Rodriguez Triple Junction, controlled contamination without mechanical mixing in a magma chamber presents the most likely scenario.  相似文献   
26.
The X-ray Telescope (XRT) aboard the Hinode satellite is a grazing incidence X-ray imager equipped with a 2048×2048 CCD. The XRT has 1 arcsec pixels with a wide field of view of 34×34 arcmin. It is sensitive to plasmas with a wide temperature range from < 1 to 30 MK, allowing us to obtain TRACE-like low-temperature images as well as Yohkoh/SXT-like high-temperature images. The spacecraft Mission Data Processor (MDP) controls the XRT through sequence tables with versatile autonomous functions such as exposure control, region-of-interest tracking, flare detection, and flare location identification. Data are compressed either with DPCM or JPEG, depending on the purpose. This results in higher cadence and/or wider field of view for a given telemetry bandwidth. With a focus adjust mechanism, a higher resolution of Gaussian focus may be available on-axis. This paper follows the first instrument paper for the XRT (Golub et al., Solar Phys. 243, 63, 2007) and discusses the design and measured performance of the X-ray CCD camera for the XRT and its control system with the MDP.  相似文献   
27.
28.
29.
30.
Blooms of cyanobacteria are responsible for many problems in freshwater ecosystems. The massive growth of these microorganisms may limit the utilization of freshwater for human requirements since, apart from other problems, the production of toxic substances has been found to occur frequently during blooming periods. Ecologically, cyanobacterial blooms can modify dramatically the ecosystem through their low edibility within the food web and the huge primary production. Thus, saprobic processes are stimulated and the characteristics related to anaerobic conditions are also more extreme.Cyanobacterial blooms are many times explained as the consequence of the eutrophication of waterbodies. However, factors promoting bloom formation and ecological succession of cyanobacteria are not well understood yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号