首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   863篇
  免费   51篇
  国内免费   9篇
测绘学   53篇
大气科学   65篇
地球物理   213篇
地质学   290篇
海洋学   81篇
天文学   131篇
综合类   7篇
自然地理   83篇
  2023年   4篇
  2022年   6篇
  2021年   29篇
  2020年   12篇
  2019年   19篇
  2018年   34篇
  2017年   35篇
  2016年   49篇
  2015年   31篇
  2014年   27篇
  2013年   56篇
  2012年   42篇
  2011年   45篇
  2010年   42篇
  2009年   59篇
  2008年   45篇
  2007年   44篇
  2006年   37篇
  2005年   22篇
  2004年   42篇
  2003年   29篇
  2002年   22篇
  2001年   19篇
  2000年   28篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   8篇
  1990年   5篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1984年   6篇
  1983年   12篇
  1982年   6篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
排序方式: 共有923条查询结果,搜索用时 15 毫秒
141.
Locating and quantifying groundwater flow in many built-up areas are a priority with regard to its complete restoration. In this work, a hydrogeological survey of the surroundings of the Punta Begoña Galleries (Getxo, Bizkaia), built on a coastal cliff, was completed by using ground penetrating radar (GPR) testing. Thus, the preliminary characterization of soils and rocks in accessible areas of the cliff was first improved by hydrogeological information gathered from a single survey borehole, including permeability measurements by low pressure injection tests (LPTs) and continuous water level monitoring. As a complementary method, the non-destructive GPR technique was performed during both dry and wet hydrological periods and in tandem with the injection tests, providing more complete spatial and temporal images of water flows. Specifically, GPR allows mapping of flow paths in soils and assessing the continuity of fractures in rock masses. Altogether, this complementary approach provides greater knowledge of complex underground flow dynamics in built environments, thus making it easier to make decisions for their management.  相似文献   
142.
This article explores the hypothesis that natural losses of light nonaqueous phase liquids (LNAPLs) through dissolution and evaporation can control the overall extent of LNAPL bodies and LNAPL fluxes observed within LNAPL bodies. First, a proof‐of‐concept sand tank experiment is presented. An LNAPL (methyl tert‐butyl ether) was injected into a sand tank at five constant injection rates that were increased stepwise. Initially, for each injection rate the LNAPL bodies expanded quickly. With time the rate of expansion of the LNAPL bodies slowed and at extended times the extent of the LNAPL became constant. Attainment of a stable LNAPL extent is attributed to rates of LNAPL addition being equal to rates of LNAPL losses through dissolution and evaporation. Secondly, analytical solutions are developed to extrapolate the processes observed in the proof‐of‐concept experiment to dimensions and time frames that are consistent with field‐scale LNAPL bodies. Three LNAPL body geometries that are representative of common field conditions are considered including one‐dimensional, circular, and oblong shapes. Using idealized conditions, the solutions describe volumetric LNAPL fluxes as a function of position in LNAPL bodies and the overall extent of LNAPL bodies as a function of time. Results from both the proof‐of‐concept experiment and the mathematical developments illustrate that natural losses of LNAPL can play an important role in governing LNAPL fluxes within LNAPL bodies and the overall extent of LNAPL bodies.  相似文献   
143.
As a topographic modelling technique, structure-from-motion (SfM) photogrammetry combines the utility of digital photogrammetry with a flexibility and ease of use derived from multi-view computer vision methods. In conjunction with the rapidly increasing availability of imagery, particularly from unmanned aerial vehicles, SfM photogrammetry represents a powerful tool for geomorphological research. However, to fully realize this potential, its application must be carefully underpinned by photogrammetric considerations, surveys should be reported in sufficient detail to be repeatable (if practical) and results appropriately assessed to understand fully the potential errors involved. To deliver these goals, robust survey and reporting must be supported through (i) using appropriate survey design, (ii) applying suitable statistics to identify systematic error (bias) and to estimate precision within results, and (iii) propagating uncertainty estimates into the final data products. © 2019 John Wiley & Sons, Ltd.  相似文献   
144.

Parameterization of wave runup is of paramount importance for an assessment of coastal hazards. Parametric models employ wave (e.g., Hs and Lp) and beach (i.e., β) parameters to estimate extreme runup (e.g., R2%). Thus, recent studies have been devoted to improving such parameterizations by including additional information regarding wave forcing or beach morphology features. However, the effects of intra-wave dynamics, related to the random nature of the wave transformation process, on runup statistics have not been incorporated. This work employs a phase- and depth- resolving model, based on the Reynolds-averaged Navier-Stokes equations, to investigate different sources of variability associated with runup on planar beaches. The numerical model is validated with laboratory runup data. Subsequently, the role of both aleatory uncertainty and other known sources of runup variability (i.e., frequency spreading and bed roughness) is investigated. Model results show that aleatory uncertainty can be more important than the contributions from other sources of variability such as the bed roughness and frequency spreading. Ensemble results are employed to develop a new parametric model which uses the Hunt (J Waterw Port Coastal Ocean Eng 85:123–152, 1959) scaling parameter \(\beta \left (H_{s}L_{p}\right )^{1/2}\).

  相似文献   
145.
146.
147.
Kuo MC  Fan K  Kuochen H  Chen W 《Ground water》2006,44(5):642-647
Mechanisms for interpreting anomalous decreases in radon in ground water prior to earthquakes are examined with the help of a case study to show that radon potentially is a sensitive tracer of strain changes in the crust preceding an earthquake. The 2003 Chengkung earthquake of magnitude (M) 6.8 on December 10, 2003, was the strongest earthquake near the Chengkung area in eastern Taiwan since 1951. The Antung radon-monitoring station was located 20 km from the epicenter. Approximately 65 d prior to the 2003 Chengkung earthquake, precursory changes in radon concentration in ground water were observed. Specifically, radon decreased from a background level of 780 pCi/L to a minimum of 330 pCi/L. The Antung hot spring is situated in a fractured block of tuffaceous sandstone surrounded by ductile mudstone. Given these geological conditions, we hypothesized that the dilation of brittle rock mass occurred at a rate faster than the recharge of pore water and gas saturation developed in newly created cracks preceding the earthquake. Radon partitioning into the gas phase may explain the anomalous decrease of radon precursory to the 2003 Chengkung earthquake. To support the hypothesis, vapor-liquid, two-phase radon-partitioning experiments were conducted at formation temperature (60 degrees C) using formation brine from the Antung hot spring. Experimental data indicated that the decrease in radon required a gas saturation of 10% developed in rock cracks. The observed decline in radon can be correlated with the increase in gas saturation and then with the volumetric strain change for a given fracture porosity.  相似文献   
148.
Data requirements for assessing the significance of the soil vapor intrusion pathway are evolving, and the collection and interpretation of subslab and near-slab soil-gas samples are under discussion. The potential for different assessment paradigms for aerobically biodegradable and recalcitrant chemicals is also frequently debated. In this work, the soil-gas distribution beneath and around a slab-on-grade building overlying shallow (0.5 to >1.5 m below ground surface) petroleum hydrocarbon–impacted coarse alluvial soils was studied. The study spanned about 12 months, including the sampling of soil-gas hydrocarbon and oxygen concentrations, subslab soil vs. building pressure differentials and included weather conditions. Three-dimensional soil-gas concentration "snapshots" using samples from 79 soil-gas sampling points are presented here. Significant spatial variability was observed with hydrocarbon and oxygen concentrations ranging from about <0.01 to 200 mg/L and 0 to 21% v/v, respectively. The presence of oxygen and the depth to petroleum-impacted soils appeared to be the dominant factors in controlling the soil-gas distribution; the depletion of hydrocarbons over short lateral and vertical distances (<2 m) was observed in the well-oxygenated regions. Composition data suggest preferential biodegradation of lighter compounds at some points, as reflected in the ratio of the masses of chemicals eluting on the gas chromatography between methane and pentane (C1 and C5) and all others after pentane (>C5).  相似文献   
149.
This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号