For first time, during 1991, seismic activity was recorded during an eruption at Colima volcano. We analyze these data to
obtain a stress pattern using a composite focal mechanism technique. From the analysis of regional seismicity, the Tamazula
Fault and the Armeria River appear as active features and the dip of the slab east of the Jalisco Block is approximately 12°.
Southwest of Colima volcano a vertical alignment of seismic events was observed. We estimate five different composite focal
mechanism solutions from our data set, which indicate a change of the stress field at the volcano after the 1991 eruption.
These solutions suggest that the stress field in the volcanic edifice was controlled by stresses related to the emplacement
of magma superimposed on the regional stress field. No evidence of active local faults in the volcanic edifice was found.
We propose a model for the eruptive process that involves tilting of the volcanic edifice.
Received: 15 October 1995 / Accepted: 26 October 1998 相似文献
A long history of increases in population pressure in Java has caused agricultural land use to expand and intensify. More recent land use changes caused the conversion of prime agricultural land into residential and industrial area. Results of a dynamic, regional-scale, land use change model are presented, defining the spatial distribution of these land use changes. The model is based on multi-scale modelling of the relations between land use and socio-economic and biophysical determinants. Historical validation showed that the model can adequately simulate the pattern of land use change. Future patterns of land use change between 1994 and 2010 are simulated assuming further urbanization. The results suggest that most intensive land use changes will occur in Java's lowland areas. 相似文献
This paper documents the application of a microdiamond-based approach to the estimation of diamond grade in the Pipe 1 kimberlite at the Koidu mine in Sierra Leone. A geological model of Pipe 1 was constructed to represent the distribution and volume of the dominant kimberlite units within the pipe. Bulk samples, along with representative microdiamond samples, were collected from these units at surface and were used to define the ratio between microdiamond stone frequency (+212 μm stones per kilogram) and recoverable macrodiamond grade (+1.2 mm carats per tonne; 1 carat = 0.2 g). These ratios were applied to a comprehensive, spatially representative microdiamond sample dataset and were combined with a spatial model of country-rock xenolith dilution within the pipe to estimate +1.2 mm recoverable grades. The resource estimate was reconciled with subsequent production results in the elevation range 160 to 100 m above sea level. Production results for each of the six 10 m benches covering this elevation range were compared to the estimated average grades for these zones in the pipe. For the five cases where most of the kimberlite mass on a given bench is represented in the production data, the results show a maximum discrepancy of 6% between predicted and reported production grade with no indication of any consistent bias. This indicates that, when supported by a sound geological model and suitable microdiamond and macrodiamond data, the microdiamond-based estimation approach can provide reliable constraints on macrodiamond grade, even in the case of geologically complex bodies such as Koidu Pipe 1.
The United Nations has declared 2008 to be the International Year of Planet Earth. It is being organised under the auspices of the International Union of Geological Sciences and UNESCO. Planning for the International Year of Planet Earth has consisted of establishing 10 major science themes including Hazards. The Hazards Theme is centred around the following key questions: (1) How have humans altered the geosphere, the biosphere and the landscape, thereby creating long-term changes detrimental to life and the environment and triggering certain hazards, while increasing societal vulnerability to geophysical (geological and hydrometeorological) hazards? (2) What technologies and methodologies are required to assess the vulnerability of people and places to hazards and how might these be used at a variety of spatial scales? (3) How do geophysical hazards compare relative to each other regarding current capabilities for monitoring, prediction and mitigation and what can be done in the short-term to improve these capabilities (4) What barriers exist to the utilisation of risk and vulnerability information by governments (and other entities) for risk and vulnerability reduction policies and planning (including mitigation) from each of the geophysical hazards? Following the 26 December 2004 Indian Ocean Tsunami and the UN World Conference on Disaster Reduction held in Kobe, Japan in January 2005, the International Council for Science (ICSU) decided to establish a major research programme and initiative on Natural and Human Induced Environmental Hazards and Disasters that will co-operate with the Hazards theme of the International Year and continue through to 2011. 相似文献
AbstractField-scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local-scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field-scale water balances because they have larger footprint areas than local soil moisture measurements. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5-m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D to estimate groundwater recharge. Variation in measured D was attributed to redirection of snowmelt infiltration and differences in lysimeter hydraulic properties caused by surface soil treatment. During the growing seasons of 2010, 2011 and 2012, ETwbLys (278, 289 and 269 mm, respectively) was in good agreement with ETEC (298, 301 and 335 mm). Annual recharge estimated from modelled D was 486, 624 and 613 mm for three calendar years 2010, 2011 and 2012, respectively. In summary, lysimeter D and ETEC can be integrated to estimate and model groundwater recharge.
Four similar sponges of different colors, all unknown to science, were collected in submarine caves of New Caledonia. We aimed at determining whether the four chromotypes represented different species or phenotypic variations of a unique new species. We used an integrative taxonomic approach combining morphologic, molecular and metabolomic analyses. The main traits that define these specimens are a skeleton made of monolophose, trilophose and tetralophose calthrops only, high chemical diversity and a high abundance and diversity of prokaryotic symbionts. The symbiotic community includes two unique prokaryote morphotypes, which are described for the first time in Homoscleromorpha, and appeared to be vertically transmitted. Although several features slightly differ among chromotypes, the most parsimonious conclusion was to propose a single new species Plakina kanaky sp. nov. Our phylogenetic analysis indicated the paraphyly of the Plakina genus, with P. kanaky sp. nov. belonging to a clade that includes Plakina jani and Plakina trilopha. The present work demonstrates that integrative taxonomy should be used in order to revise the entire Plakinidae family and especially the non‐monophyletic genus Plakina. 相似文献
We determined the weather type, according to the Jenkinson and Collison procedure, of the 22 646 days in the 1948-2009 period for the western Mediterranean basin. The analysis is based upon the surface pressure values of the NCEP/NCAR reanalysis, for a grid of nine points with extreme vertices at 45º N, 5º W and 35º N, 15º E, which provides a broad synoptic catalogue for this region. We analyzed the trends of the types and their different groupings during the same period. The most frequent type is U (undetermined), with an annual average of approximately 100 days (99.4, 27.2%), followed by type A (anticyclone), with 75.5 days/ year (20.7%), and C (depression), with 67.8 days/year (18.6%). The high frequency of type U is due to the habitual pressure of baric fields with a low gradient over Mediterranean waters in the warm half of the year. According to their directions, the types from the west are the most frequent and those from the south, the least. The monthly regime of the most frequent types and groupings is quite regular; type C groups, as well as advective and cyclonic curvature groups, present summertime minima and maxima in the cold half of the year, whereas the opposite occurs with types U and A. The main statistically significant annual trends in the 1948-2009 period involve a decrease in type A (–4.19 days/decade, that is, –29.0%) and an increase in type U, the cyclonic types and those presenting an easterly component. On comparing the 31-yr sub-periods 1948-1978 and 1979-2009, the tendencies of A and U were confirmed, and increases can generally be seen in the types presenting an easterly component and a decrease in those with a westerly component. The variation in type A ranged from 2490 days in the first sub-period to 2192 in the second one (p = 0.000), mainly concentrated in summer and autumn. This evident reduction of type A coincides, paradoxically, with an increase in the sea surface pressure variable (+0.31 hPa/decade) throughout the 62 years of analysis. The negative trend found in type A differs from the results of some studies. The different analysis periods, the different scales or areas of study and the variety of methods used to determine the weather types can account for the fact that these results are discordant. Moreover, warming over the last few decades in the waters of the western Mediterranean basin, as well as the clearly cyclogenetic character of the gulfs of Lion and Genoa, might account for the decrease in type A and the increase in the cyclonic curvature types. 相似文献
In 1994, a network of small catchments (GEOMON) was established in the Czech Republic to determine input–output element fluxes in semi-natural forest ecosystems recovering from anthropogenic acidification. The network consists from 16 catchments and the primary observations of elements fluxes were complemented by monitoring of biomass stock, element pools in soil and vegetation, and the main water balance components. Over last three decades, reductions of SO2, NOx and NH3 emissions were followed by sulphur (S) and nitrogen (N) deposition reductions of 75% and 30%, respectively. Steeper declines of strong acid anion concentrations compared to cations (Ca, Mg, Na, K, NH4) in precipitation resulted in precipitation pH increase from 4.5 to 5.2 in bulk precipitation and from 4.0 to 5.1 in spruce throughfall. Stream chemistry responded to changes in deposition: S leaching declined. However at majority of catchments soils acted as a net source of S to runoff, delaying recovery. Stream pH increased at acidic streams (pH < 6) and aluminium concentration decreased. Stream nitrate (NO3) concentration declined by 60%, considerably more than N deposition. Stream NO3 concentration was tightly positively related to stream total dissolved nitrogen to total phosphorus (P) ratio, suggesting the role of P availability on N retention. Trends in dissolved organic carbon fluxes responded to both acidification recovery and to runoff temporal variation. An exceptional drought occurred between 2014 and 2019. Over this recent period, streamflow decreased by ≈ 40% on average compared to 1990s, due to the increases of soil evaporation and vegetation transpiration by ≈ 30% and declines in precipitation by ≈ 15% on average across the elevational gradient. Sharp decreases of stream runoff at catchments <650 m a.s.l. corresponded to areas of recent forest decline caused by bark beetle infestation on drought stressed spruce forests. Understanding of the interactions among legacies of acidification and eutrophication, drought effects on the water cycle and forest disturbance dynamics is requisite for effective management of forested ecosystems under anthropogenic influence. 相似文献