首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27609篇
  免费   378篇
  国内免费   954篇
测绘学   1553篇
大气科学   2242篇
地球物理   5281篇
地质学   12711篇
海洋学   1302篇
天文学   2135篇
综合类   2176篇
自然地理   1541篇
  2023年   19篇
  2022年   29篇
  2021年   93篇
  2020年   102篇
  2019年   97篇
  2018年   4828篇
  2017年   4135篇
  2016年   2734篇
  2015年   354篇
  2014年   221篇
  2013年   244篇
  2012年   1149篇
  2011年   2904篇
  2010年   2175篇
  2009年   2490篇
  2008年   2047篇
  2007年   2474篇
  2006年   181篇
  2005年   308篇
  2004年   525篇
  2003年   516篇
  2002年   331篇
  2001年   116篇
  2000年   122篇
  1999年   60篇
  1998年   60篇
  1997年   40篇
  1996年   41篇
  1995年   34篇
  1994年   17篇
  1993年   23篇
  1992年   23篇
  1991年   26篇
  1990年   27篇
  1989年   12篇
  1988年   19篇
  1987年   21篇
  1986年   11篇
  1985年   22篇
  1984年   32篇
  1983年   30篇
  1982年   25篇
  1981年   48篇
  1980年   36篇
  1979年   11篇
  1978年   15篇
  1977年   17篇
  1976年   20篇
  1975年   16篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
701.
We developed a spatially explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of Atlantic croaker in the northwestern Gulf of Mexico lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 × 800 spatial grid of 1-km2 cells for 140 years. Chlorophyll-a concentration, water temperature, and dissolved oxygen (DO) were specified daily for each grid cell and repeated for each year of the simulation. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and the movement behavior of juveniles and adults was modeled based on temperature and avoidance of low DO. Hypoxia effects were imposed using exposure effect submodels that converted time-varying exposures to low DO to reduced hourly growth, increased hourly mortality, and reduced annual fecundity. Results showed that 100 years of either mild or intermediate hypoxia produced small reductions in population abundance, while repeated severe hypoxia caused a 19% reduction in long-term population abundance. Relatively few individuals were exposed to low DO each hour, but many individuals experienced some exposure. The response was dominated by a 5% average reduction in annual fecundity of individuals. Under conditions of random sequences of mild, intermediate, and severe hypoxia years occurring in proportion to their historical frequency, the model predicted a 10% decrease in the long-term population abundance of croaker. A companion paper substitutes hourly DO values from a three-dimensional water quality model for the idealized hypoxia and results in a more realistic population reduction of about 25%.  相似文献   
702.
Sequestration of organic carbon (OC) in environmental systems is critical to mitigating climate change. Organo-mineral associations, especially those with iron (Fe) oxides, drive the chemistry of OC sequestration and stability in soils. Short-range-ordered Fe oxides, such as ferrihydrite, demonstrate a high affinity for OC in binary systems. Calcium commonly co-associates with OC and Fe oxides in soils, though the bonding mechanism (e.g., cation bridging) and implications of the co-association for OC sequestration remain unresolved. We explored the effect of calcium (Ca2+) on the sorption of dissolved OC to 2-line ferrihydrite. Sorption experiments were conducted between leaf litter-extractable OC and ferrihydrite at pH 4 to 9 with different initial C/Fe molar ratios and Ca2+ concentrations. The extent of OC sorption to ferrihydrite in the presence of Ca2+ increased across all tested pH values, especially at pH ≥ 7. Sorbed OC concentration at pH 9 increased from 8.72 ± 0.16 to 13.3 ± 0.20 mmol OC g?1 ferrihydrite between treatments of no added Ca2+ and 30 mM Ca2+ addition. Batch experiments were paired with spectroscopic studies to probe the speciation of sorbed OC and elucidate the sorption mechanism. ATR-FTIR spectroscopy analysis revealed that carboxylic functional moieties were the primary sorbed OC species that were preferentially bound to ferrihydrite and suggested an increase in Fe-carboxylate ligand exchange in the presence of Ca at pH 9. Results from batch to spectroscopic experiments provide significant evidence for the enhancement of dissolved OC sequestration to 2-line ferrihydrite and suggest the formation of Fe–Ca-OC ternary complexes. Findings of this research will inform modeling of environmental C cycling and have the potential to influence strategies for managing land to minimize OM stabilization.  相似文献   
703.
River deltas along Alaska’s Beaufort Sea coast are used by hatch-year semipalmated sandpipers (Calidris pusilla) after leaving their terrestrial natal sites, but the drivers of their use of these stopover sites on the first “hop” of fall migration are unknown. We quantified sandpiper temporal distribution and abundance as related to food resources at three river deltas during the beginning of their fall migration (post-breeding period) to compare the habitat quality among these deltas. We conducted population counts, sampled invertebrates, and captured birds to collect blood samples from individuals for triglyceride and stable isotope analyses to determine fattening rates and diet. Patterns of sandpiper and invertebrate abundance were complex and varied among deltas and within seasons. River deltas were used by sandpipers from late July to late August, and peak sandpiper counts ranged from 1000 to 4000 individuals, of which 98% were hatch-year semipalmated sandpipers. Isotopic signatures from blood plasma samples indicated that birds switched from a diet of upland tundra to delta invertebrate taxa as the migration season progressed, suggesting a dependence on delta invertebrates. Despite differences in diet among deltas, we found no differences in fattening rates of juvenile sandpipers as indicated by triglyceride levels. The number of sandpipers was positively associated with abundance of Amphipoda and Oligochaeta at the Jago and Okpilak-Hulahula deltas; an isotopic mixing model indicated that sandpipers consumed Amphipoda and Oligochaeta at Jago, mostly Chironomidae at Okpilak-Hulahula and Spionidae at Canning. Regardless of the difference in sandpiper diets at the Beaufort Sea deltas, their similar fattening rates throughout the season indicate that all of these stopover sites provide a critical food resource for hatch-year sandpipers beginning their first migration.  相似文献   
704.
Evaluations of tidal wetland restoration efforts suffer from a lack of appropriate reference sites and standardized methods among projects. To help address these issues, the National Estuarine Research Reserve System (NERRS) and the NOAA Restoration Center engaged in a partnership to monitor ecological responses and evaluate 17 tidal wetland restoration projects associated with five reserves. The goals of this study were to (1) determine the level of restoration achieved at each project using the restoration performance index (RPI), which compares change in parameters over time between reference and restoration sites, (2) compare hydrologic and excavation restoration projects using the RPI, (3) identify key indicator parameters for assessing restoration effectiveness, and (4) evaluate the value of the NERRS as reference sites for local restoration projects. We found that the RPI, modified for this study, was an effective tool for evaluating relative differences in restoration performance; most projects achieved an intermediate level of restoration from 2008 to 2010, and two sites became very similar to their paired reference sites, indicating that the restoration efforts were highly effective. There were no differences in RPI scores between hydrologic and excavation restoration project types. Two abiotic parameters (marsh platform elevation and groundwater level) were significantly correlated with vegetation community structure and thus can potentially influence restoration performance. Our results highlight the value of the NERRS as reference sites for assessing tidal wetland restoration projects and provide improved guidance for scientists and restoration practitioners by highlighting the RPI as a trajectory analysis tool and identifying key monitoring parameters.  相似文献   
705.
The introduction of a non-native freshwater fish, blue catfish Ictalurus furcatus, in tributaries of Chesapeake Bay resulted in the establishment of fisheries and in the expansion of the population into brackish habitats. Blue catfish are an invasive species in the Chesapeake Bay region, and efforts are underway to limit their impacts on native communities. Key characteristics of the population (population size, survival rates) are unknown, but such knowledge is useful in understanding the impact of blue catfish in estuarine systems. We estimated population size and survival rates of blue catfish in tidal habitats of the James River subestuary. We tagged 34,252 blue catfish during July–August 2012 and 2013; information from live recaptures (n = 1177) and dead recoveries (n = 279) were used to estimate annual survival rates and population size using Barker’s Model in a Robust Design and allowing for heterogeneity in detection probabilities. The blue catfish population in the 12-km study area was estimated to be 1.6 million fish in 2013 (95% confidence interval [CI] adjusted for overdispersion: 926,307–2,914,208 fish). Annual apparent survival rate estimates were low: 0.16 (95% CI 0.10–0.24) in 2012–2013 and 0.44 (95% CI 0.31–0.58) in 2013–2014 and represent losses from the population through mortality, permanent emigration, or both. The tagged fish included individuals that were large enough to exhibit piscivory and represented size classes that are likely to colonize estuarine habitats. The large population size that we estimated was unexpected for a freshwater fish in tidal habitats and highlights the need to effectively manage such species.  相似文献   
706.
Eutrophication and species introductions have resulted in increased macroalgal biomass in coastal ecosystems around the globe. Macroalgal mats may compete with microphytobenthos (MPB) for light and nutrients and, due to their position in the canopy, have a negative impact on MPB biomass. We tested this effect by conducting a meta-analysis of prior experiments, as well as a comparative survey, and a macroalgal-removal manipulation in the coastal lagoons of the Virginia Coastal Reserve (VCR) on the eastern shore of Virginia (USA). In all cases, MPB biomass was estimated using benthic chlorophyll as a proxy. While prior individual studies documented impacts of macroalgae, when effect sizes were averaged across studies, there was no consistent effect of macroalgal biomass on MPB biomass. In the VCR, a non-native red macroalga, Gracilaria vermiculophylla, dominates intertidal mats and attains high biomasses at some sites. Nevertheless, MPB biomass was unrelated to macroalgal mass based on a survey of mudflats. Further, when macroalgae were experimentally manipulated on a mudflat using a before and after impact design, there was no change in MPB. Based on the meta-analysis, survey, and manipulation we conducted, macroalgal mats do not have a generalizable effect on MPB, interactions seem context-dependent, and in the VCR, the effects on MPB appear neutral. This finding is important given the significance of MPB in supporting food webs and other estuarine ecosystem functions, as well as the increasing frequency and intensity of macroalgal blooms.  相似文献   
707.
The coastal ocean model FVCOM is applied to quantify the changes in circulation, flushing, and exposure time in Great South Bay, New York, after Superstorm Sandy breached the barrier island in 2012. Since then, the lagoon system is connected to the Atlantic via five instead of four inlets. The model simulations are run on two high-resolution unstructured grids, one for the pre-breach configuration, one including the new inlet, with tidal-only forcing, and summer and winter forcing conditions. Despite its small cross-sectional size, the breach has a relatively large net inflow that leads to a strengthening of the along-bay through-flow in Great South Bay (GSB); the tidally driven volume transport in central GSB quadrupled. The seasonal forcing scenarios show that the southwesterly sea breeze in summer slows down the tidally driven flow, while the forcing conditions in winter are highly variable, and the circulation is dependent on wind direction and offshore sea level. Changes in flushing and exposure time associated with the modified transport patterns are evaluated using a Eulerian passive tracer technique. Results show that the new inlet produced a significant decrease in flushing time (approximately 35% reduction under summer wind conditions and 20% reduction under winter wind conditions). Maps of exposure time reflect the local changes in circulation and flushing.  相似文献   
708.
Nutrient mass balance analyses are a way of obtaining ‘whole system’ viewpoints on coastal biogeochemical functions and their forcing. Seasonal mass balances are presented for four large bay systems in New Zealand (NZ), with the aim of showing how they can inform coastal management. Freshwater volumes, and surface and groundwater, wastewater and atmospheric inorganic and organic nitrogen (N) and phosphorus (P) were balanced with levels of salinity, N and P from ocean surveys, used to determine non-conservative N and P fluxes and, via stoichiometry, carbon (C) fluxes. For Golden and Tasman Bays and Hauraki Gulf, exchange with adjacent shelf waters usually dominated total N supply (80–85%). In contrast, for the Firth of Thames, 51% of total N and 85% of dissolved inorganic N supply originated from its agricultural catchment. Net ecosystem metabolism (NEM; balance of autotrophy and heterotrophy) of Golden and Tasman Bays and Hauraki Gulf was usually nearly balanced. In contrast, Firth NEM was highly seasonally variable, often exhibiting strong heterotrophy coincident with expression of respiration-related stressors (low O2 and high DIC/low pH). Denitrification accounted for about 51% of total N export across the four systems, signifying its importance as a eutrophication-regulating ecosystem service. Budgets made 12 years apart in the Firth showed decreased denitrification efficiency, coincident with large increases in system N and phytoplankton. The findings for land-ocean nutrient balance, NEM and denitrification showed how mass balance budgeting can inform coastal management, including inventories of nutrient inputs, balances of oceanic and terrestrial nutrient loading, and potential for risk associated with biogeochemical responses.  相似文献   
709.
Predation is likely the primary source of mortality for juvenile penaeid shrimp and, therefore, a key factor driving their population dynamics. We sampled juvenile penaeids and their potential predators in a salt marsh from July to August 2012 to examine the impact of these predators and possible size-selective predation on the shrimp population. We quantified predator impact using the frequency of occurrence (FO) index and a relative predation index (RPI) that accounts for predator abundance and the number of shrimp consumed per individual predator. Size selectivity was assessed by comparing the size distribution of shrimp in the study area to the size distribution of shrimp removed from predator stomachs. Two penaeid species, white shrimp Litopenaeus setiferus and brown shrimp Farfantepenaeus aztecus, were collected, and most (86%) were juvenile white shrimp ≤?12 mm carapace length. Spotted seatrout Cynoscion nebulosus, which consumed relatively large shrimp, was the most important predator based on the FO index. Bay whiff Citharichthys spilopterus, which ate the smallest shrimp, was the most important predator based on the RPI. The size distribution of shrimp removed from predator stomachs differed from those collected in the study area; the smallest shrimp were disproportionally more abundant in predator stomachs. Using the RPI, we identified some potentially important predators (e.g., bay whiff) that may impact shrimp populations by consuming the smallest shrimp in estuarine nurseries. Our approach could be useful for examining predator impacts on other populations of juvenile penaeids and more generally for any prey consumed by fish predators.  相似文献   
710.
Mount Bulusan, the Philippines’ fourth most active volcano, erupted in February 21, 2011, sending volcanic ash and pyroclastic materials to its surrounding rivers. The waters drained into the estuary of harmful algal blooms plagued Sorsogon Bay. We aim to determine the impact of the 2011 volcanic eruption and the preceding volcanic ash emissions to the dissolved silica concentration of rivers draining the flanks of Mt. Bulusan and its possible implications to the phytoplankton assemblage of the bay. Six river water sampling periods from August 2010 to October 2012 overlapped with Mt. Bulusan’s active phase of volcanism. Our data shows that mean river silica from pre-eruption levels of ~?500 μM increased by more than 200% during and post-eruption. Highest Si concentration of 2270 μM was measured from Cadacan River in August 2011. Here, we argue that the sustained general increase of dissolved silica is due to the silica-containing materials from Mt. Bulusan’s eruption and that their concentration in river waters is also a function of watershed lithology and precipitation. Increase in dissolved silica and other nutrients caused a shift to diatom domination and, possibly, termination of Pyrodinium bahamense var. compressum blooms. Silica load increase in embayments is a natural process that controls the dominance of algae. Our study also highlights the importance of Philippine rivers to the global ocean silica budget as a function of high precipitation, tectonics in general, and volcanism in particular.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号