首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   22篇
测绘学   32篇
大气科学   34篇
地球物理   93篇
地质学   69篇
海洋学   11篇
天文学   45篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   14篇
  2019年   9篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   15篇
  2014年   17篇
  2013年   36篇
  2012年   18篇
  2011年   21篇
  2010年   12篇
  2009年   16篇
  2008年   14篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
171.
To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FE?, developed by the University of New Hampshire (UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave (vertical) and pitch (rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%?20% of the corresponding velocities when at the surface.  相似文献   
172.
Mathematical Geosciences - Unfortunately, in the original version of the article the first and second name of the fourth author were wrong.  相似文献   
173.
Cratons form the cores of continents and were formed within a narrow window of time (2.5–3.2 Gy ago), the majority having remained stable ever since. Petrologic evidence suggests that the thick mantle roots underlying cratons were built by underthrusting of oceanic and arc lithosphere, but paradoxically this requires that the building blocks of cratons are weak even though cratons must have been strong subsequent to formation. Here, we propose that one form of thickening could be facilitated by thrusting of oceanic lithospheres along weak shear zones, generated in the serpentinized upper part of the oceanic lithosphere (crust + mantle) due to hydrothermal interaction with seawater. Conductive heating of the shear zones eventually causes serpentine breakdown at ~ 600 °C, shutting down the shear zone and culminating in craton formation. However, if shear zones are too thin, serpentine breakdown and healing of the shear zone occurs too soon and underthrusting does not occur. If shear zones are too thick, serpentine breakdown takes too long so healing and lithospheric thickening is not favored. Shear zone thicknesses of ~ 18 km are found to be favorable for craton formation. Because the maximal depth of seawater-induced serpentinization into the lithosphere is limited by the depth of the isotherm for serpentine breakdown, shear zone thicknesses should have increased with time as the Earth's heat flux and depth to the serpentine breakdown isotherm decreased and increased, respectively, with time. We thus suggest that the greater representation of cratons in the late Archean might not necessarily be explained by preferential recycling in the early Archean but may simply reflect preferential craton formation in the late Archean. That is, our model predicts that the early Archean was too hot, the Phanerozoic too cold, and the late Archean just right for making cratons.  相似文献   
174.
 The Elbe region is representative of humid to semi-humid landscapes in Central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas with high crop productivity having annual precipitation lower than 500 mm. This paper summarizes the results of the first phase of the GLOWA (GLObal WAter)-Elbe project and tries to assess the reliability of water supply in the German part of the Elbe river basin for the next 50 years, a time scale relevant for the implementation of water and land use management plans. One focus of the study was developing scenarios which are consistent with climate and land use changes considering possible uncertainties. The concluding result of the study is that nature and communities in parts of Central Europe will have to deal with considerably lower water resources under scenario conditions.  相似文献   
175.
We present a case study on the detection and quantification of seismic signals induced by operating wind turbines (WTs). We spatially locate the sources of such signals in data which were recorded at 11 seismic stations in 2011 and 2012 during the TIMO project (Deep Structure of the Central Upper Rhine Graben). During this time period, four wind farms with altogether 12 WTs were in operation near the town of Landau, Southwest Germany. We locate WTs as sources of continuous seismic signals by application of seismic interferometry and migration of the energy found in cross-correlograms. A clear increase of emitted seismic energy with rotor speed confirms that the observed signal is induced by WTs. We can clearly distinguish wind farms consisting of different types of WTs (different hub height and rotor diameter) corresponding to different stable frequency bands (1.3–1.6 Hz, 1.75–1.95 Hz and 2.0–2.2 Hz) which do not depend on wind speed. The peak frequency apparently is controlled by the elastic eigenmodes of the structure rather than the passing of blades at the tower. From this we conclude that vibrations are coupled into the ground at the foundation and propagate as Rayleigh waves (and not as infrasound). The migration velocity of 320 m/s corresponds to their group velocity. The applied migration method can contribute to the assessment of local sources of seismic noise. This topic gets growing attention in the seismological community. In particular, the recent boost of newly installed wind farms is a threat to seismological observatories such as the Black Forest Observatory (BFO) and the Gräfenberg array (GRF) or gravitational wave observatories (e.g. LIGO, VIRGO) in terms of a sensitivity degradation of such observatories.  相似文献   
176.
177.
We examine the effect of poroelastic boundary conditions when determining elastic properties of fluid-saturated porous rocks from forced-oscillation laboratory experiments. One undesired yet often unavoidable complication in the estimation of the undrained bulk modulus is due to the presence of the so-called dead volume. It implies that some fluid mass can escape the rock sample under applying a confining pressure perturbation. Thus, the dead volume compromises the undrained state required to unambiguously determine the undrained bulk modulus. In this paper, we model data of recently performed low-frequency (0.1 Hz) measurements. Therein, the dead volume has been systematically varied from 10% to 1000% of the pore volume. For the smallest dead volume, the inferred bulk modulus is close to the Biot–Gassmann undrained bulk modulus. With increasing dead volume, the experimentally inferred bulk modulus approaches the drained bulk modulus. We show that the transition from undrained to drained state as a function of dead volume can be modelled with a 1D poroelastic model for the rock sample-dead volume system with a boundary condition that honours the continuity of the fluid volume flux. We discuss the limitations of the 1D model when applied to data recorded at higher frequencies (up to 100 Hz).  相似文献   
178.
The decay of seismic amplitude is caused by a variety of physical phenomena that can be divided broadly into elastic transmission losses (including geometrical spreading, interface transmission losses and scattering attenuation) and intrinsic attenuation, where wave energy is converted into heat due to viscous friction. The so-called statistical averaging method is currently considered as the most advanced sonic wave attenuation estimation method, and there exist various implementations of this method. But the way elastic transmission losses – that mask the true intrinsic attenuation – are compensated for appears to be an issue and in some cases this correction has been overlooked. In this paper, we revisit the statistical averaging method for intrinsic attenuation estimation with particular focus on the role of elastic transmission losses. Through synthetic examples, we demonstrate the importance of compensating for elastic transmission losses even if the variation of velocity and density with depth is not notable. Our implementation of the method uses finite-difference simulations thereby providing a versatile and accurate way to generate synthetic seismograms. We use a combination of elastic and viscoelastic finite-difference simulations to demonstrate the significant error without accurate compensation of the elastic transmission losses. We apply our implementation of the method to sonic waveforms acquired in an exploration well from Browse basin, Australia. The resulting intrinsic attenuation estimates are indeed indicative of gas-saturated zones identified from petrophysical analysis in which viscous friction are thought to be of importance.  相似文献   
179.
On aerial photographs, sandy tidal flats display (1) large sandy bedforms (> 10 m long, > 3 m wide), indicating effects of strong hydrodynamics on sediment relief, and (2) beds of seagrass and mussels, indicating stable sediment conditions. These physical and biogenic structures have been mapped from aerial photographs taken in a back-barrier tidal basin of the North Sea coast at low tide between 1936 and 2005. Fields of large intertidal sandy bedforms show a consistent spatial distribution in the central part of the basin, and have increased in area from 7.2 to 12.8 km2, corresponding now to 10% of the tidal flats. Areal expansion may be linked to a rise in average high tide level and an increase of the expansion rate from the 1960s to the mid 1990s might be traced back to an increased frequency of storm tides during this period. It is shown that expanding fields of large sandy bedforms have replaced mussel beds in the low tidal zone and displaced seagrass beds in the mid tidal zone. Fields of intertidal large sandy bedforms are expected to expand further with an accelerating rise in sea level, and it is recommended to monitor these physical indicators of sediment instability and disturbance of biogenic benthic structures by analysing aerial photographs.  相似文献   
180.
A prominent weakening in equatorial Atlantic sea surface temperature (SST) variability, occurring around the year 2000, is investigated by means of observations, reanalysis products and the linear recharge oscillator (ReOsc) model. Compared to the time period 1982–1999, during 2000–2017 the May–June–July SST variability in the eastern equatorial Atlantic has decreased by more than 30%. Coupled air–sea feedbacks, namely the positive Bjerknes feedback and the negative net heat flux damping are important drivers for the equatorial Atlantic interannual SST variability. We find that the Bjerknes feedback weakened after 2000 while the net heat flux damping increased. The weakening of the Bjerknes feedback does not appear to be fully explainable by changes in the mean state of the tropical Atlantic. The increased net heat flux damping is related to an enhanced response of the latent heat flux to the SST anomalies (SSTa). Strengthened trade winds as well as warmer SSTs are suggested to increase the air–sea specific humidity difference and hence, enhancing the latent heat flux response to SSTa. A combined effect of those two processes is proposed to be responsible for the weakened SST variability in the eastern equatorial Atlantic. The ReOsc model supports the link between reduced SST variability, weaker Bjerknes feedback and stronger net heat flux damping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号