首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1123篇
  免费   72篇
  国内免费   14篇
测绘学   46篇
大气科学   103篇
地球物理   243篇
地质学   397篇
海洋学   87篇
天文学   229篇
综合类   3篇
自然地理   101篇
  2023年   3篇
  2022年   3篇
  2021年   16篇
  2020年   22篇
  2019年   31篇
  2018年   45篇
  2017年   39篇
  2016年   45篇
  2015年   40篇
  2014年   32篇
  2013年   78篇
  2012年   56篇
  2011年   63篇
  2010年   48篇
  2009年   66篇
  2008年   63篇
  2007年   54篇
  2006年   59篇
  2005年   35篇
  2004年   47篇
  2003年   58篇
  2002年   31篇
  2001年   22篇
  2000年   27篇
  1999年   13篇
  1998年   12篇
  1997年   17篇
  1996年   13篇
  1995年   12篇
  1994年   12篇
  1993年   13篇
  1992年   10篇
  1991年   5篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   5篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   8篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
排序方式: 共有1209条查询结果,搜索用时 203 毫秒
141.
We observed Saturn at far-infrared and submillimeter wavelengths during the Earth's March 1980 passage through the plane of Saturn's rings. Comparison with earlier spectroscopic observations by D. B. Ward [Icarus32, 437–442 (1977)], obtained at a time when the tilt angle of the rings was 21.8°, permits separation of the disk and ring contributions to the flux observed in this wavelength range. We present two main results: (1) The observed emission of the disk between 60 and 180 μm corresponds to a brightness temperature of 104 ± 2°K; (2) the brightness temperature of the rings drops approximately 20°K between 60 and 80 μm. Our data, in conjunction with the data obtained by other observers between 1 μm and 1 mm, permit us to derive an improved estimate for the total Saturnian surface brightness of (4.84 ± 0.32) × 10?4W cm?2 corresponding to an effective temperature of 96.1 ± 1.6°K. The ratio of radiated to incident power, PR/PI, is (1.46 ± 0.08)/(1 - A), where A is the Bond albedo. For A = 0.337 ± 0.029, PR/PI = 2.20 ± 0.15 and Saturn's intrinsic luminosity is LS = (2.9 ± 0.5) × 10?10L.  相似文献   
142.
143.
144.
145.
Spline surfaces are interpolated for top of the Dundee Limestone of the central Michigan Basin, USA. The requirement of gridded data render spline functions inappropriate tools for representing many types of geological mapped data. Comparisons are drawn with maps for the same Michigan data based on trend surfaces and spatial filtering.  相似文献   
146.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   
147.
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses.
Emil D. AttanasiEmail:
  相似文献   
148.
The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast–northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays.  相似文献   
149.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   
150.
As the global climate warms due to increasing greenhouse gases, the regional climate of the Gulf of Mexico and Caribbean region will also change. This study presents the latest estimates of the expected changes in temperature, precipitation, tropical cyclone activity, and sea level. Changes in temperature and precipitation are derived from climate model simulations produced for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), by comparing projections for the mid- and late-21st century to the late 20th century and assuming a “middle-of-the-road” scenario for future greenhouse gas emissions. Regional simulations from the North America Regional Climate Change Program (NARCCAP) are used to corroborate the IPCC AR4 rainfall projections over the US portion of the domain. Changes in tropical cyclones and sea level are more uncertain, and our understanding of these variables has changed more since IPCC AR4 than in the case of temperature and precipitation. For these quantities, the current state of knowledge is described based on the recent peer-reviewed literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号