首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1356篇
  免费   55篇
  国内免费   15篇
测绘学   48篇
大气科学   117篇
地球物理   292篇
地质学   492篇
海洋学   112篇
天文学   246篇
综合类   3篇
自然地理   116篇
  2022年   4篇
  2021年   17篇
  2020年   24篇
  2019年   34篇
  2018年   47篇
  2017年   42篇
  2016年   51篇
  2015年   44篇
  2014年   36篇
  2013年   91篇
  2012年   57篇
  2011年   78篇
  2010年   54篇
  2009年   73篇
  2008年   67篇
  2007年   60篇
  2006年   60篇
  2005年   40篇
  2004年   52篇
  2003年   67篇
  2002年   36篇
  2001年   24篇
  2000年   32篇
  1999年   16篇
  1998年   17篇
  1997年   20篇
  1996年   19篇
  1995年   16篇
  1994年   16篇
  1993年   15篇
  1992年   12篇
  1991年   7篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1985年   10篇
  1984年   13篇
  1983年   12篇
  1982年   8篇
  1981年   11篇
  1980年   10篇
  1979年   14篇
  1978年   17篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
  1973年   6篇
  1971年   8篇
  1970年   4篇
排序方式: 共有1426条查询结果,搜索用时 15 毫秒
871.
Pesticides used to maintain golf course turf can threaten ground water. This concern is particularly important in most of New York's Long Island, where generally sandy soils overlie a sole source aquifer. This study uses two methods to evaluate the potential for pesticides that are commonly used on Long Island's golf courses to leach to ground water.
Adapting the Pesticide Root Zone Model (PRZM). Release 1. for dense turf and applying site-specific soil data, certain pesticides, including metalaxyl and trichlorfon, are identified as potential problem leachers. PRZM simulations also identify the Long Island soils, including the sandy Plymouth and Carver soils, which arc most vulnerable to leaching.
When adequate input data for PRZM is unavailable, the ground water ubiquity score (GUS) method may be useful. GUS teachability classifications of pesticides commonly applied on Long Island golf courses, and of pesticides actually detected in ground water samples taken on Long Island, agree with PRZM predictions and the field data. The GUS method is applied to the evaluation of the leaching potential of pesticide degradation products (DCPA, maneb, and mancozeb metabolites), and the degradation products are shown to be a greater threat to ground water than their parent compounds.
These methods are potentially useful in designing ground water monitoring programs and for guiding the pesticide use and selection decisions of golf course managers.  相似文献   
872.
Force identification is a type of system identification procedure which determines applied force from system responses; it has engineering applications where direct measurements of forces are not feasible. To identify the force, one can consider that the system model and its parameters are known, and then use the measured response of the system to determine the unknown forces. In contrast, postulating the system model and its parameter values is a difficult task, especially when considering a nonlinear system where the model poses many unknowns or inherent mathematical problems. In this research, a more direct way to identify the unknown force without knowing the model of the system is proposed. The approach, called the sum of weighted acceleration technique (SWAT), is a method that can predict input forces with measured linear and nonlinear structural responses. SWAT employs measured accelerations multiplied by effective or optimal weights to estimate the input force. Results using this method show that the force calculated using SWAT accurately predicts the force which excites a nonlinear structure response. The technique could be applied to both constrained and unconstrained structures.  相似文献   
873.
In the Hanford Reach of the Columbia River, a thin layer of recent alluvium overlies the sedimentary formations that comprise the unconfined groundwater aquifer. Experimental and modelling studies have demonstrated that this alluvial layer exerts significant control on the exchange of groundwater and surface water (hydrologic exchange flux), and is associated with elevated levels of biogeochemical activity. This layer is also observed to be strongly heterogeneous, and quantifying the spatial distribution of properties over the range of scales of interest is challenging. Facies are elements of a sediment classification scheme that groups complex geologic materials into a set of discrete classes according to distinguishing features. Facies classifications have been used as a framework for assigning heterogeneous material properties to grid cells of numerical models of flow and reactive transport in subsurface media. The usefulness of such an approach hinges on being able to relate facies to quantitative properties needed for flow and reactive transport modelling, and on being able to map facies over the domain of interest using readily available information. Although aquifer facies have been used in various modelling contexts, application of this concept to riverbed sediments is relatively new. Here, we describe an approach for categorizing and mapping recent alluvial (riverbed) sediments based on the integration of diverse observations with numerical simulations of river hydrodynamics. The facies have distinct distributions of sediment texture that correspond to variations in hydraulic properties, and therefore provide a useful framework for assigning heterogeneous properties in numerical simulations of hydrologic exchange flows and biogeochemical processes.  相似文献   
874.
Understanding natural soil redistribution processes is essential for measuring the anthropogenic impact on landscapes. Although meteoric beryllium-10 (10Be) has been used to determine erosion processes within the Pleistocene and Holocene, fewer studies have used the isotope to investigate the transport and accumulation of the resulting sediment. Here we use meteoric 10Be in hilltop and valley site soil profiles to determine sediment erosion and deposition processes in the Christina River Basin (Pennsylvania, USA). The data indicate natural erosion rates of 14 to 21 mm 10−3 yr and soil ages of 26 000 to 57 000 years in hilltop sites. Furthermore, valley sites indicate an alteration in sediment supply due to climate change (from the Pleistocene to the Holocene) within the last 60 000 years and sediment deposition of at least 0.5–2 m during the Wisconsinan glaciation. The change in soil erosion rate was most likely induced by changes in geomorphic processes; probably solifluction and slope wash during the cold period, when ice advanced into the mid latitudes of North America. This study shows the value of using meteoric 10Be to determine sediment accumulation within the Quaternary and quantifies major soil redistribution occurred under natural conditions in this region. © 2018 John Wiley & Sons, Ltd.  相似文献   
875.
Long‐term aggradation of the Waiho River, South Westland, New Zealand, has now raised the head of its alluvial fan to unprecedented elevations. In its natural state the river would, like all other major rivers in the area, be somewhat incised into its fanhead. The only relevant factor able to account for the aggradation is the presence of control banks (‘stopbanks’ in local parlance) that restrict the ability of the river to move over the whole of its natural fanhead. A 1 : 3333 scale physical hydraulic model (a ‘microscale’ model) was used to study this situation. An alluvial fan was generated in the model and allowed to develop to equilibrium with steady inputs of water and sediment within boundaries geometrically similar to those of the natural unrestricted Waiho River. The boundaries were then altered to represent the presence of the stopbanks, and the fan allowed to continue evolving under the same water and sediment inputs. The model fanhead aggraded in a spatial pattern similar to that recorded on the Waiho. Taking into consideration the limitations of microscale modelling, these results indicate that the aggradation in the Waiho is a result of the lateral restriction of the river by stopbanks. This poses fundamental questions about the variables that control the behaviour of alluvial fans. The results also suggest that microscale modelling can be used to make reliable quantitative predictions of the effects of engineering works on rivers, in spite of the low level of dynamic similarity with the prototype compared to that in larger‐scale models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
876.
The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one‐dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.  相似文献   
877.
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) in the U.S. Central Great Plains (Akron, Colorado) were simulated using the CERES V4.0 crop modules in RZWQM2. The CC scenarios for CO2, temperature and precipitation were based on a synthesis of Intergovernmental Panel on Climate Change (IPCC 2007) projections for Colorado. The CC for years 2025, 2050, 2075, and 2100 (CC projection years) were super-imposed on measured baseline climate data for 15–17 years collected during the long-term WF and WCF (1992–2008), and WCM (1994–2008) experiments at the location to provide inter-annual variability. For all the CC projection years, a decline in simulated wheat yield and an increase in actual transpiration were observed, but compared to the baseline these changes were not significant (p > 0.05) in all cases but one. However, corn and proso millet yields in all rotations and projection years declined significantly (p < 0.05), which resulted in decreased transpiration. Overall, the projected negative effects of rising temperatures on crop production dominated over any positive impacts of atmospheric CO2 increases in these dryland cropping systems. Simulated adaptation via changes in planting dates did not mitigate the yield losses of the crops significantly. However, the no-tillage maintained higher wheat yields than the conventional tillage in the WF rotation to year 2075. Possible effects of historical CO2 increases during the past century (from 300 to 380 ppm) on crop yields were also simulated using 96 years of measured climate data (1912–2008) at the location. On average the CO2 increase enhanced wheat yields by about 30%, and millet yields by about 17%, with no significant changes in corn yields.  相似文献   
878.
Observations and records maintained by the Hudson's Bay Company at York Factory and Churchill Factory on Hudson Bay between 1714 and 1825, serve as the source of information for a study of changes in the date of arrival of geese as a phonological indicator of climatic change. Changes in the migration pattern of geese are reflected in the changing date of arrival at the same location over a long period of time. Variations in this date are determined to be a function of southerly or tailwinds in the northward spring migration.  相似文献   
879.
We applied three-dimensional geostatistical interpolation to evaluate the extent of liquefiable materials at two sites that liquefied during the 1994 Northridge Earthquake. The sites were the Balboa Blvd site and the Wynne Ave. site located in the alluvial San Fernando Valley. The estimated peak ground accelerations at the sites are 0.84 g (Balboa Blvd) and 0.51 g (Wynne Ave.). These sites were chosen because surface effects due to liquefaction were not predicted using available techniques based on thickness and depth of liquefiable layers (Ishihara [Ishihara K. Stability of natural deposits during earthquakes. Proceedings of the 11th international conference on soil mechanics and foundation engineering, vol. 1. Rotterdam, The Netherlands: A.A. Balkema; 1985. p. 321–76.]) and the Liquefaction Potential Index (Iwasaki et al. [Iwasaki T, Tatsuoka F, Tokida K, Yasuda S. A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proceedings of the second international conference on microzonation, San Francisco; 1978. p. 885–96.]). During the earthquake, both sites experienced surface effects including ground cracking and extension as a result of liquefaction. Foundations and buried utilities were damaged at both sites. The sites were investigated after the event by researchers with the United States Geologic Survey using standard penetration tests (SPT) and cone penetration tests. In this paper, liquefaction potential was estimated for each soil sample using results from SPTs according to the updated Seed and Idriss simplified procedure. The probability of liquefaction was estimated by applying an indicator transform to the results of the liquefaction potential calculation. We compared our results to detailed geologic mapping of the sites performed by other researchers. Using geostatistical interpolation to estimate the probability of liquefaction is a useful supplement to geologic evaluation of liquefaction potential. The geostatistical analysis provides an estimate of the continuous volume of liquefiable soil along with an assessment of confidence in an interpolation. The probability of liquefaction volumes compare well with those predicted using geologic interpretations.  相似文献   
880.
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号