首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   75篇
  国内免费   14篇
测绘学   48篇
大气科学   117篇
地球物理   291篇
地质学   491篇
海洋学   112篇
天文学   245篇
综合类   3篇
自然地理   116篇
  2022年   4篇
  2021年   16篇
  2020年   24篇
  2019年   34篇
  2018年   47篇
  2017年   42篇
  2016年   51篇
  2015年   44篇
  2014年   36篇
  2013年   91篇
  2012年   57篇
  2011年   78篇
  2010年   53篇
  2009年   73篇
  2008年   67篇
  2007年   60篇
  2006年   60篇
  2005年   40篇
  2004年   52篇
  2003年   67篇
  2002年   36篇
  2001年   24篇
  2000年   32篇
  1999年   16篇
  1998年   17篇
  1997年   20篇
  1996年   19篇
  1995年   16篇
  1994年   16篇
  1993年   15篇
  1992年   12篇
  1991年   7篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1985年   10篇
  1984年   13篇
  1983年   12篇
  1982年   8篇
  1981年   11篇
  1980年   10篇
  1979年   14篇
  1978年   17篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
  1973年   6篇
  1971年   8篇
  1970年   4篇
排序方式: 共有1423条查询结果,搜索用时 15 毫秒
841.
Abstract— Partial melting experiments at temperatures of 950–1300 °C were conducted on the H6 chondrite Kernouvé under reducing conditions using CO‐CO2 gas mixing and graphite‐buffered sealed silica tubes to examine the effect of reducing conditions during melting of starting materials that are more oxidized relative to the oxygen fugacity conditions of the experiments. The experiments produced a range of mineralogical and compositional changes. Olivine exhibits significant reduction to compositions of Fa2–5 at temperatures of 1300 °C. In contrast, orthopyroxene exhibits only slight reduction until the highest temperatures. Chromite is sometimes consumed by intruding sulfides, and displays increasingly magnesian compositions ranging as low as Fe/Fe + Mg of 0.1 at a constant Cr/Cr + Al ratio. The compositional changes with increasing temperature reflect a complex set of reactions, including oxidation‐reduction. One application of these experiments address whether primitive achondrites could have formed from ordinary chondrite‐like precursors by partial melting under reducing conditions. While changes observed in olivine and troilite compositions might support such an idea, differences in oxygen isotopic composition, Cr/Cr + Al in chromite, orthopyroxene compositions, and thermodynamic evidence against reduction during melting of primitive achondrites (Benedix et al. 2005) firmly refute such an idea.  相似文献   
842.
In recent years increased attention has been paid to the potential uses of acoustics for extraterrestrial exploration. This paper concerns two aspects which should be taken into account when transposing terrestrial experience with acoustics to smaller worlds. These are, specifically, the effect on the acoustics of the variation of gravity with depth, and the curvature of the world's surface. A case resembling Europa is used quantitatively to illustrate these effects, indicating significant errors if these factors are neglected.  相似文献   
843.
The Martian seasonal CO2 ice caps advance and retreat each year. In the spring, as the CO2 cap gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 cap to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 cap edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 ice. We hypothesize that we are seeing evidence for a seasonal annulus of water ice (frost) that recedes with the seasonal CO2 cap, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 cap and most likely composed of water ice. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring.  相似文献   
844.
We investigate the clustering properties of a complete sample of 105 star-forming galaxies drawn from the data release 4 (DR4) of the Sloan Digital Sky Survey. On scales less than 100 kpc, the amplitude of the correlation function exhibits a strong dependence on the specific star formation rate (SSFR) of the galaxy. We interpret this as the signature of enhanced star formation induced by tidal interactions. We then explore how the average star formation rate (SFR) in a galaxy is enhanced as the projected separation r p between the galaxy and its companions decreases. We find that the enhancement strongly depends on r p, but very weakly on the relative luminosity of the companions. The enhancement is also stronger in low-mass galaxies than in high-mass galaxies. In order to explore whether a tidal interaction is not only sufficient, but also necessary to trigger enhanced star formation in a galaxy, we compute background subtracted neighbour counts for the galaxies in our sample. The average number of close neighbours around galaxies with low to average values of SFR/ M * is close to zero. At the highest SSFRs, however, more than 40 per cent of the galaxies in our sample have a companion within a projected radius of 100 kpc. Visual inspection of the highest SFR/ M * galaxies without companions reveals that more than 50 per cent of these are clear interacting or merging systems. We conclude that tidal interactions are the dominant trigger of enhanced star formation in the most strongly star-forming systems. Finally, we find clear evidence that tidal interactions not only lead to enhanced star formation in galaxies, but also cause structural changes such as an increase in concentration.  相似文献   
845.
Although hydrologic responses to land cover changes are often studied using a paired watershed approach, it is not feasible to assess the hydrological effects of many different patterns of land cover alteration by empirical studies alone. An alternative is to use well validated, spatially explicit, physically based numerical models to estimate watershed storage and flux dynamics. The objectives of this study were to assess the sensitivity of watershed flow regimes to several spatial and temporal patterns of forest harvest and recovery in a snow‐dominated mountain watershed. The Distributed Hydrology Soil‐Vegetation Model (DHSVM) was parameterized using 1998–2007 climate data for the 28‐km2 Mica Creek Experimental Watershed (MCEW), a headwater catchment in the inland Pacific Northwest. The modelling experiment indicated that clear‐cutting the entire watershed would increase runoff volume by 79% and 5th percentile flows by 68%. Hydrologic recovery resulting from forest regeneration after clear‐cut harvesting is expected to take up to 25 years to return to baseline conditions, and 50 years to fully recover to preharvest conditions. A more realistic harvesting scenario where the watershed was gradually harvested in a series of clear‐cut blocks allowing for subsequent regeneration to occur was also assessed. This approach reduced the magnitude of hydrologic alteration. Analysis of several other scenarios, defined by aspect, elevation, and distance to the stream network, revealed that flow regime was more sensitive to the amount of alteration rather than pattern and landscape position of disturbance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
846.
Two‐dimensional flood inundation models are widely used tools for flood hazard mapping and an essential component of statutory flood risk management guidelines in many countries. Yet, we still do not know how much physical complexity a flood inundation model needs for a given problem. Here, three two‐dimensional explicit hydraulic models, which can be broadly defined as simulating diffusive, inertial or shallow water waves, have been benchmarked using test cases from a recent Environment Agency for England and Wales study, where results from industry models are also available. To ensure consistency, the three models were written in the same code and share subroutines for all but the momentum (flow) and time‐stepping calculations. The diffusive type model required much longer simulation times than the other models, whilst the inertia model was the quickest. For flows that vary gradually in time, differences in simulated velocities and depths due to physical complexity were within 10% of the simulations from a range of industry models. Therefore, for flows that vary gradually in time, it appears unnecessary to solve the full two‐dimensional shallow water equations. As expected, however, the simpler models were unable to simulate supercritical flows accurately. Finally, implications of the results for future model benchmarking studies are discussed in light of a number of subtle factors that were found to cause significant differences in simulations relative to the choice of model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
847.
In this study, we use records of nitrogen isotope ratios (δ15N), UK’37 temperature estimates, organic carbon and opal percentages from high-resolution sediment cores located in the eastern equatorial Pacific (EEP) to explore the mechanisms linking millennial-scale changes in low-latitude sea surface temperature, water column denitrification and surface productivity to the timing of northern or southern polar climate during the last 100,000 yr. Our results support a hypothesis that the Southern Hemisphere, and its connection to the low latitudes via shallow subsurface ocean circulation, has a primary influence on the biogeochemistry of the EEP. In addition, our results suggest that, during the last glacial stage, denitrification rates fluctuated on millennial timescales in response to water-column ventilation rather than upstream oxidant demand in intermediate-depth waters.However, due to the poor age constraints available for Marine Isotopic Stage (MIS) 3, the EEP sedimentary data presented here could support two conflicting mechanisms, one driven by enhanced intermediate overturning circulation in the Southern Ocean during Heinrich Events/Antarctic Warm Events, implying that subsurface flow rates control thermocline ventilation, and a second one consistent with more sluggish intermediate circulation during Antarctic Warm Events and giving a central role to the temperature control on oxygen solubility in Southern Ocean surface waters.  相似文献   
848.
We evaluated the importance and contributions of changes in stream base cation concentration, stream discharge and lake shoreline load to changes in base cation concentrations in two small inland lakes in south‐central Ontario. The shoreline load from ungauged drainage areas was calculated with a mass balance equation. An evaluation method based on the partial Mann–Kendall test quantified the relative contributions of these three explanatory drivers to the observed trends in lake concentration of Ca, K, Mg and Na. Over a 29‐year period (1978–2006) at Red Chalk and Harp lakes, declines in stream concentration and discharge were correlated with the declines in lake concentrations of all base cations (except for Na in Harp Lake), with contributions of 21–81% from stream concentration and 12–58% from discharge, whereas the shoreline load had little contribution to observed trends. The observed unusual increase in Na concentration at Harp Lake was correlated with the increase in stream Na concentration and additional load from road salts, with the shoreline load contributing a substantial 37%. These results may be applicable to numerous inland lakes with similar site conditions, including lakes found on the Canadian Shield. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
849.
Headwater forest ecosystems of the western USA generate a large portion of the dissolved organic matter (DOM) transported in streams across North America. Land cover changes that alter forest structure and species composition affect the quantity and composition of DOM transferred to aquatic ecosystems. Clear-cut harvesting affects ~1% of the forest area of North America annually, leaving most western forests in varying stages of regrowth and the total area of old-growth forest is decreasing. The consequences of this widespread management practice on watershed carbon cycling remain unknown. We investigated the role of land cover change, because of clear-cut harvesting, from mixed-species old-growth to lodgepole pine-dominated second-growth forest on the character and reactivity of hillslope DOM exports. We evaluated inputs of DOM from litter leachates and export of DOM collected at the base of trenched hillslopes during a 3-year period (2016–2018) at the Fraser Experimental Forest in north-central Colorado, USA. Dissolved organic carbon and total dissolved nitrogen were higher in lateral subsurface flow draining old- versus second-growth forest. Fluorescence spectroscopy showed that the DOM exported from the old-growth forest was more heterogeneous and aromatic and that proteinaceous, microbially processed DOM components were more prevalent in the second-growth forest. Biological oxygen demand assays revealed much lower microbial metabolism of DOM in litter leachate and subsurface exports from the old-growth forest relative to second growth. Old-growth and second-growth forests are co-mingled in managed ecosystems, and our findings demonstrate that land cover change from a mixture of conifer species to lodgepole pine dominance influences DOM inputs that can increase the reactivity of DOM transferred from terrestrial to aquatic ecosystems.  相似文献   
850.
This study reports the nature and timing of Quaternary fluvial activity in the Fitzroy River basin, which drains a diverse 143,000 km2 area in northeastern Queensland, before discharging into the Great Barrier Reef Marine Park. The catchment consists of an extensive array of channel and floodplain types that we show have undergone large-scale fluvial adjustment in-channel planform, geometry and sinuosity. Optically stimulated luminescence (OSL) dating of quartz sediments from fifteen (3–18 m) floodplain cores throughout the basin indicates several discrete phases of active bedload activity: at ~105–85 ka in Marine Isotope Stage (MIS) 5, at ~50–40 ka (MIS 3), and at ~30–10 ka (MIS 3/2). The overall timing of late Quaternary fluvial activity correlates well with previous accounts from across Australia with rivers being primarily active during interstadials. Fluvial activity, however, does not appear to have been synchronous throughout the basin’s major sub-catchments. Fluvial activity throughout MIS 2 (i.e. across the Last Glacial Maximum) in the meandering channels of the Fitzroy correlates well with regional data in tropical northeastern Queensland, and casts new light on the river response to reduced rainfall and vegetation cover suggested by regional palaeoclimate indicators. Moreover, the absence of a strong Holocene signal is at odds with previous accounts from elsewhere throughout Australia. The latitudinal position of the Fitzroy across the Tropic of Capricorn places this catchment at a key location for elucidating the main hydrological drivers of Quaternary fluvial activity in northeastern Australia, and especially for determining tropical moisture sources feeding into the headwaters of Cooper Creek, a major river system of the continental interior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号