首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   18篇
  国内免费   6篇
测绘学   10篇
大气科学   35篇
地球物理   60篇
地质学   117篇
海洋学   9篇
天文学   87篇
综合类   5篇
自然地理   19篇
  2022年   7篇
  2021年   6篇
  2020年   13篇
  2019年   10篇
  2018年   12篇
  2017年   11篇
  2016年   12篇
  2015年   8篇
  2014年   21篇
  2013年   13篇
  2012年   12篇
  2011年   13篇
  2010年   22篇
  2009年   21篇
  2008年   14篇
  2007年   6篇
  2006年   14篇
  2005年   15篇
  2004年   6篇
  2003年   17篇
  2002年   8篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1990年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1969年   1篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有342条查询结果,搜索用时 640 毫秒
41.
Sutter's Mill is a regolith breccia composed of both heavily altered clasts and more reduced xenoliths. Here, we present a detailed investigation of fragments of SM18 and SM51. We have characterized the water content and the mineralogy by infrared (IR) and thermogravimetric analysis (TGA) and the structure of the organic compounds by Raman spectroscopy, to characterize the secondary history of the clasts, including aqueous alteration and thermal metamorphism. The three methods used in this study suggest that SM18 was significantly heated. The amount of water contained in phyllosilicates derived by TGA is estimated to be approximately 3.2 wt%. This value is quite low compared with other CM chondrites that typically range from 6 to 12 wt%. The infrared transmission spectra of SM18 show that the mineralogy of the sample is dominated by a mixture of phyllosilicate and olivine. SM18 shows an intense peak at 11.2 μm indicative of olivine (Fig. 1). If we compare SM18 with other CM and metamorphosed CM chondrites, it shows one of the most intense olivine signatures, and therefore a lower proportion of phyllosilicate minerals. The Raman results tend to support a short‐duration heating hypothesis. In the ID/IG versus FWHM‐D diagram, SM18 appears to be unusual compared to most CM samples, and close to the metamorphosed CM chondrites Pecora Escarpment (PCA) 91008 and PCA 02012. In the case of SM51, infrared spectroscopy reveals that olivine is less abundant than in SM18 and the 10 μm silicate feature is more similar to that of moderately altered CM chondrites (like Murchison or Queen Alexandra Range [QUE] 97990). Raman spectroscopy does not clearly point to a heating event for SM51 in the ID/IG versus FWHM‐D diagram. However, TGA analysis suggests that SM51 was slightly dehydrated as the amount of water contained in phyllosilicates is approximately 3.7 wt%, which is higher than SM18, but still lower than phyllosilicate water contents in weakly altered CM chondrites. Altogether, these results confirm that fragments with different secondary histories are present within the Sutter's Mill fall. The dehydration that is clearly observed for SM18 is attributed to a short‐duration heating based on the similarity of its Raman spectra to that of PCA 91008. Because of the brecciated nature of Sutter's Mill and the presence of adjacent clasts with different thermal histories, impacts that can efficiently fragment and heat porous materials are the preferred heat source.  相似文献   
42.
Abstract— The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modelling, and proportions of fractionating phases were determined using the MAGFOX program of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts — produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an “r” value of 0.3). (2) Ilmenite basalts — produced by variable degrees of partial melting (4–8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts — produced by variable degrees of partial melting (5–10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.  相似文献   
43.
44.
45.
The Adams County, Colorado, H5 chondrite contains a lithic fragment, 1 cm in size, that is texturally and mineralogically quite different from the chondritic host. It is composed of: a groundmass of fine-grained euhedral to subhedral olivine (3–15 μm) and interstitial glass enclosing larger olivine and pyroxene grains (0.15-0.5 mm; about 15 vol %); an assemblage of enstatite grains (subfragment within) and an assemblage of olivine plus orthopyroxene (a second subfragment); and about 11 vol % grains of mixed troilite and nickel-iron metal. Analyses yielded these results: (i) olivine grains of the fragment groundmass have a compositional range (Fa12–45) and most grains contain substantial CaO and Cr2O3 (~ 0.20 and 0.30 avg. wt%, respectively); interstitial glass has ~ 55 wt% SiO2; (ii) larger olivine grains of the fragment are similarly high in CaO and Cr2O3 and also have a wide FeO/MgO range; one unusual pyroxene is an Mg-rich pigeonite; (iii) the metal is martensite in composition (11–14 wt% Ni); and (iv) major and trace element analyses by INAA indicate an H-group bulk composition for the entire 1 cm lithic fragment. On the basis of its texture and bulk and mineral compositions, the fragment is interpreted to represent unequilibrated H-group material that was partly melted by impact. The Ca- and Cr-enriched groundmass olivine and interstitial glass resulted from rapid crystallization of the chondritic melt. The Ca- and Cr-enriched larger silicate grains, including the enstatite sub-fragment and the pigeonite grain, are residual, unmelted clasts from the target material (this is supported by the presence of similar material in actual H3 chondrites). Further impact brecciation of the clast-laden melt material, and resultant impact-splashing accounts for the presence of the fragment in the H-group Adams County host and documents the coexistence of unequilibrated and equilibrated H-group material as surface regolith on one parent body.  相似文献   
46.
Major, minor and trace element abundances have been determined by instrumental neutron activation analysis (INAA) in whole rock and plagioclase separates of Serra de Magé (SdM). The whole rock contains 52% normative plagioclase and its chondritic normalized REE abundance pattern shows a large Eu anomaly, dominated by the plagioclase REE distribution, and nearly unfractionated La-Sm and Sm-Lu abundances. The plagioclase separates contained ~ 6% pyroxenes and exhibited a typical plagioclase REE distribution. The REE abundances in the derivative equilibrium magmas from which SdM and Moore County (MC) plagioclases crystallized have been estimated from the plagioclase data and the plagioclase mineral/liquid partition coefficients. The REE distributions in possibly earlier parental magmas were calculated by assuming that various degrees of plagioclase and pigeonite (plagioclase/pigeonite = 1) fractional crystallization had been operative prior to the crystallization of SdM and MC. The calculated La/Sm and Sm/Yb ratios for the earlier magmas are essentially the same as the equilibrium magmas over a wide range (10–95%) of the assumed fractional crystallization. Considering the REE distributions and the Fe/Fe+Mg ratios, calculation shows that there is no simple genetic relationship between MC and SdM via fractional crystallization processes. A hypothesis for the derivation of these cumulate eucrites in the plutonic environment from residual diogenitic liquid, which was produced by the extensive partial melting of an eucritic source material followed by the crystallization of diogenite, also fails to account for the fractionated REE patterns calculated for the equilibrium and the possible parental magmas for either SdM or MC. Equilibrium non-modal partial melting calculations indicate that SdM and MC could be genetically related by a factor ~ 6 difference in the degrees of partial melting from a similar source material. However, this common source material which should contain > 30% high-Ca clinopyroxene and has a chondritic normalized La/Yb ~ 3, is different than that proposed for the non-cumulate eucrites.  相似文献   
47.
The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10−5 to ∼0.3 mbar (relative humidity: 10−4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.  相似文献   
48.
We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ≤230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ~85 ka rhyolites yielded ages between ~100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ~200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (≤10’s to 100’s ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies.  相似文献   
49.
We report the results of an experimental calibration of oxygen isotope fractionation between quartz and zircon. Data were collected from 700 to 1000 °C, 10–20 kbar, and in some experiments the oxygen fugacity was buffered at the fayalite–magnetite–quartz equilibrium. Oxygen isotope fractionation shows no clear dependence on oxygen fugacity or pressure. Unexpectedly, some high-temperature data (900–1000 °C) show evidence for disequilibrium oxygen isotope partitioning. This is based in part on ion microprobe data from these samples that indicate some high-temperature quartz grains may be isotopically zoned. Excluding data that probably represent non-equilibrium conditions, our preferred calibration for oxygen isotope fractionation between quartz and zircon can be described by:
This relationship can be used to calculate fractionation factors between zircon and other minerals. In addition, results have been used to calculate WR/melt–zircon fractionations during magma differentiation. Modeling demonstrates that silicic magmas show relatively small changes in δ18O values during differentiation, though late-stage mafic residuals capable of zircon saturation contain elevated δ18O values. However, residuals also have larger predicted melt–zircon fractionations meaning zircons will not record enriched δ18O values generally attributed to a granitic protolith. These results agree with data from natural samples if the zircon fractionation factor presented here or from natural studies is applied.  相似文献   
50.
Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ?25 but ?100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ∼1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO2 gas, and a more mature (oxidized) kerogen with a lower H/C which in turn melts incongruently with further burial to produce more crude oil, CO2 gas, and a kerogen with a lower H/C and so forth.The petroleum generated in the process progresses from heavy naphthenic crude oils at low temperatures to mature petroleum at ∼150 °C. For example, the results of Computer Experiment 27 (see below) indicate that the overall incongruent melting reaction in the water-absent region of the system C-H-O at 150 °C and a depth of ∼4.3 km of an immature type-II/III kerogen with a bulk composition represented by C292H288O12(c) to produce a mature (oxidized) kerogen represented by C128H68O7(c), together with a typical crude oil with an average metastable equilibrium composition corresponding to C8.8H16.9 (C8.8H16.9(l)) and CO2 gas (CO2(g)) can be described by writing
(A)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号