首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   14篇
  国内免费   16篇
测绘学   8篇
大气科学   77篇
地球物理   100篇
地质学   141篇
海洋学   34篇
天文学   22篇
综合类   4篇
自然地理   17篇
  2023年   3篇
  2022年   9篇
  2021年   19篇
  2020年   17篇
  2019年   16篇
  2018年   22篇
  2017年   21篇
  2016年   26篇
  2015年   18篇
  2014年   25篇
  2013年   32篇
  2012年   27篇
  2011年   24篇
  2010年   20篇
  2009年   20篇
  2008年   13篇
  2007年   9篇
  2006年   10篇
  2005年   6篇
  2004年   12篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1964年   1篇
排序方式: 共有403条查询结果,搜索用时 31 毫秒
71.
 Distribution of the trace elements Cr, Cu, Ni, Pb and Zn in surficial sediments of the river/sea environment in Danang – Hoian area (Vietnam) was investigated to examine the degree of metal pollution caused by anthropogenic activities. Point sources from domestic and industrial wastes are identified as dominant contributors of trace element accumulation. Surficial sediments of Hoian River show extremely high total concentrations of Cu (Average Concentration 295 μg/g), Ni (AC 112 μg/g), Pb (AC 396 μg/g) and Zn (AC 429 μg/g) that exceed assigned safety levels ER-M. Similarly, the sediments of Han River show high Pb (AC 188 μg/g) and Zn (AC 282 μg/g) contents. In marine sediments of Thanhbinh beach Pb is also enriched (138 μg/g) above guideline levels. In contrast the sediments of the Cude River are dominated by trace element concentrations close to background values. Received: 17 December 1998 · Accepted: 6 May 1999  相似文献   
72.
Compared to the pre-launch measurements, the in-orbit noise levels ofthe Short Wavelength Spectrometer (SWS) detectors show a significantincrease, considerably lowering the overall sensitivity. Cosmic rayimpacts on the detectors and/or on the instrument electronics play animportant role in the noise levels and consequently many observations offaint sources are affected by this increased noise. However, by takingadvantage of the high read-out frequency of 24 Hz and the redundanciesprovided by the observing strategy, it is possible to significantlyimprove the quality of the data. Here, we present the concept ofself-calibration and additional algorithms, which are successfullyapplied to recover the weak signals of molecular hydrogen lines undetectable in a standard data reduction.  相似文献   
73.
The stable water isotopic composition (δ2H and δ18Ο), tritium (3H) activity, dissolved organic carbon, alkalinity, as well as the composition of carbon 13 (δ13C) in dissolved inorganic carbon (DIC) of 36 water samples taken from 16 resurgences in the northeast provinces of Viet Nam in the dry (Mar 2008) and rainy (June 2008) seasons were analyzed to elucidate hydrological characteristics of the karstic aquifers in the area. The stable water isotopic composition of the water samples collected clearly demonstrated that the karstic groundwater in the region was recharged from the local meteorological water. The tritium activity in the samples was found to be in between 3 and 4 TU, falling in the range of the 3H activity in the local precipitation and thus meaning that the traveling of recharge water to the resurgences was very short. Concentrated and diffuse allogenic recharges seem to be important sources of karstic groundwater in the study region. Water in the karstic aquifers could be classified into three types as: (a) water from karstic areas with dense vegetation cover that causes DIC be depleted in carbon 13 (13δ<?12‰ vs. Pee Dee Belemnite standard of Vienna, VPDB); (b) water from karstic areas with poor vegetation cover that originates DIC with carbon 13 composition ranging from ?11 to ?12‰; and (c) surface water from lakes, springs and rivers that has DIC with enriched carbon 13 (δ13C >?10‰). This implies that there are several sources of carbon dioxide contributing to the DIC in water of the karstic aquifers in the study region. Among other potential sources, the atmospheric CO2, CO2 from carbonate rock dissolution, biomineralization of soil organic matters and plant roots respiration seem to be important sources of the DIC in the waters of this region. The results show high vulnerability towards anthropogenic contaminants of karstic groundwater in the study region.  相似文献   
74.
The interdecadal and the interannual variability of the global monsoon (GM) precipitation over the area which is chosen by the definition of Wang and Ding (Geophys Res Lett 33: L06711, 2006) are investigated. The recent increase of the GM precipitation shown in previous studies is in fact dominant during local summer. It is evident that the GM monsoon precipitation has been increasing associated with the positive phase of the interdecadal Pacific oscillation in recent decades. Against the increasing trend of the GM summer precipitation in the Northern Hemisphere, its interannual variability has been weakened. The significant change-point for the weakening is detected around 1993. The recent weakening of the interannual variability is related to the interdecadal changes in interrelationship among the GM subcomponents around 1993. During P1 (1979–1993) there is no significant interrelationship among GM subcomponents. On the other hand, there are significant interrelationships among the Asian, North American, and North African summer monsoon precipitations during P2 (1994–2009). It is noted that the action center of the interdecadal changes is the Asian summer (AS) monsoon system. It is found that during P2 the Western North Pacific summer monsoon (WNPSM)-related variability is dominant but during P1 the ENSO-related variability is dominant over the AS monsoon region. The WNPSM-related variability is rather related to central-Pacific (CP) type ENSO rather than the eastern-Pacific (EP) type ENSO. Model experiments confirm that the CP type ENSO forcing is related to the dominant WNPSM-related variability and can be responsible for the significant interrelationship among GM subcomponents.  相似文献   
75.
气候变暖对刚察县采暖气象指标的影响及节能潜力分析   总被引:1,自引:0,他引:1  
利用青海省刚察县1961—2008年逐日气温资料,运用数理统计等方法,分析了该地区采暖期气象条件变化及节能潜力。结果表明,1961—2008年间,刚察县采暖期平均气温上升,负积温减少,采暖初日推迟、终日提前,采暖长度明显缩短;采暖度日与采暖期平均气温关系密切,采暖度日呈极显著下降趋势,特别是1994年气温突变后,下降趋势更加明显,冬季寒冷程度有所减弱,能耗需求量减小;该县采暖能源需求异常偏多主要分布在20世纪60年代,偏多年份以70—80年代为主,偏少年份出现在80年代中期以后,主要集中在2000年以后。气候变暖所致采暖节能率为7%,这对节约能源、减少大气污染和温室气体排放较为有利。  相似文献   
76.
A data assimilation (DA) system using ground PM10 observation for Asian Dust Aerosol Model version 2 (ADAM2), which is the operational dust forecasting model of Korea Meteorological Administration (KMA), has been developed with the optimal interpolation (OI) method. The observations are provided by the PM10 network operated by KMA. Three DA experiments are performed to simulate a dust event observed in Korea from 1 March to 31 May 2009 with different assimilation cycles of 24 (DA24), 12 (DA12), and 06 hours (DA06). 48-hour forecasts from the adjusted Initial Condition (IC) of dust concentration are compared with control simulation (CTL) and observation from independent stations. It is found that CTL simulates spatial patterns of dust emitted and transported associated with a developing low pressure system over the dust source regions quite well, compared with satellite measurement. However, it appears that there is considerable uncertainty in estimating the concentration of dust. With IC adjustment, the model simulates improved dust concentration, showing considerably reduced RMSE, particularly for the prediction within 12 hours of forecast. At the same time, it is shown that the time interval of DA affects the predictability of ADAM2, so that DA06 appears to have better predictability within a 12-hour simulation, reducing RMSE by 50% compared with CTL. This suggests that assimilating PM10 to the dust prediction model using OI has the potential to predict air quality in Korea when the cycle of assimilation is sufficiently short.  相似文献   
77.
We investigate the future changes of Asian-Australian monsoon (AAM) system projected by 20 climate models that participated in the phase five of the Coupled Model Intercomparison Project (CMIP5). A metrics for evaluation of the model’s performance on AAM precipitation climatology and variability is used to select a subset of seven best models. The CMIP5 models are more skillful than the CMIP3 models in terms of the AAM metrics. The future projections made by the selected multi-model mean suggest the following changes by the end of the 21st century. (1) The total AAM precipitation (as well as the land and oceanic components) will increase significantly (by 4.5 %/°C) mainly due to the increases in Indian summer monsoon (5.0 %/°C) and East Asian summer monsoon (6.4 %/°C) rainfall; the Australian summer monsoon rainfall will increase moderately by 2.6 %/°C. The “warm land-cool ocean” favors the entire AAM precipitation increase by generation of an east-west asymmetry in the sea level pressure field. On the other hand, the warm Northern Hemisphere-cool Southern Hemisphere induced hemispheric SLP difference favors the ASM but reduces the Australian summer monsoon rainfall. The combined effects explain the differences between the Asian and Australian monsoon changes. (2) The low-level tropical AAM circulation will weaken significantly (by 2.3 %/°C) due to atmospheric stabilization that overrides the effect of increasing moisture convergence. Different from the CMIP3 analysis, the EA subtropical summer monsoon circulation will increase by 4.4 %/°C. (3) The Asian monsoon domain over the land area will expand by about 10 %. (4) The spatial structures of the leading mode of interannual variation of AAM precipitation will not change appreciably but the ENSO-AAM relationship will be significantly enhanced.  相似文献   
78.
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam. In this article, we proposed new machine learning ensemble techniques namely Ada Boost ensemble(ABLWL), Bagging ensemble(BLWL), Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL) with Locally Weighted Learning(LWL) algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam. For this study, eleven conditioning factors(aspect, altitude, curvature, slope, Stream Transport Index(STI), Topographic Wetness Index(TWI), soil, geology,river density, rainfall, land-use) and 134 wells yield data was used to create training(70%) and testing(30%)datasets for the development and validation of the models. Several statistical indices were used namely Positive Predictive Value(PPV), Negative Predictive Value(NPV), Sensitivity(SST), Specificity(SPF), Accuracy(ACC),Kappa, and Receiver Operating Characteristics(ROC) curve to validate and compare performance of models. Results show that performance of all the models is good to very good(AUC: 0.75 to 0.829) but the ABLWL model with AUC = 0.89 is the best. All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.  相似文献   
79.
Segmental retaining wall (SRW) systems are commonly used in geotechnical practice to stabilize cut and fill slopes. Because of their flexibility, these systems can tolerate minor movements and settlements without incurring damage or crack. Despite these advantages, very few numerical studies of large deformations and post‐failure behavior of SRW systems are found in the current literature. Traditional numerical methods, such as the finite element method, suffer from mesh entanglement, thus are unable to simulate large deformations and flexible behavior of retaining wall blocks in SRW systems. To overcome the above limitations, a novel computational framework based on the smoothed particle hydrodynamics (SPH) method was developed to simulate large deformations and post‐failure behavior of soils and retaining wall blocks in SRW systems. The proposed numerical framework is a hybrid continuum/discontinuum approach that can model soil as an elasto‐plastic material and retaining wall blocks as independent rigid bodies associated with both translational and rotational degrees of freedom. A new contact model is proposed within the SPH framework to simulate the interaction between the soil and the blocks and between the blocks. As an application of the proposed numerical method, a two‐dimensional simulation of an SRW collapse was simulated and compared to experimental results conducted under the same conditions. The results showed that the proposed computational approach provided satisfactory agreement with the experiment. This suggests that the new framework is a promising numerical approach to model SRW systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号