首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   14篇
  国内免费   16篇
测绘学   8篇
大气科学   77篇
地球物理   100篇
地质学   141篇
海洋学   34篇
天文学   22篇
综合类   4篇
自然地理   17篇
  2023年   3篇
  2022年   9篇
  2021年   19篇
  2020年   17篇
  2019年   16篇
  2018年   22篇
  2017年   21篇
  2016年   26篇
  2015年   18篇
  2014年   25篇
  2013年   32篇
  2012年   27篇
  2011年   24篇
  2010年   20篇
  2009年   20篇
  2008年   13篇
  2007年   9篇
  2006年   10篇
  2005年   6篇
  2004年   12篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1964年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
21.
During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u ? v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.  相似文献   
22.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
23.
本文概述了青海省电磁辐射台网的建设、台网特征、台网管理及映震效能。  相似文献   
24.
ABSTRACT

The predictive capability of a new artificial intelligence method, random subspace (RS), for the prediction of suspended sediment load in rivers was compared with commonly used methods: random forest (RF) and two support vector machine (SVM) models using a radial basis function kernel (SVM-RBF) and a normalized polynomial kernel (SVM-NPK). Using river discharge, rainfall and river stage data from the Haraz River, Iran, the results revealed: (a) the RS model provided a superior predictive accuracy (NSE = 0.83) to SVM-RBF (NSE = 0.80), SVM-NPK (NSE = 0.78) and RF (NSE = 0.68), corresponding to very good, good, satisfactory and unsatisfactory accuracies in load prediction; (b) the RBF kernel outperformed the NPK kernel; (c) the predictive capability was most sensitive to gamma and epsilon in SVM models, maximum depth of a tree and the number of features in RF models, classifier type, number of trees and subspace size in RS models; and (d) suspended sediment loads were most closely correlated with river discharge (PCC = 0.76). Overall, the results show that RS models have great potential in data poor watersheds, such as that studied here, to produce strong predictions of suspended load based on monthly records of river discharge, rainfall depth and river stage alone.  相似文献   
25.
ABSTRACT

Accurate runoff forecasting plays a key role in catchment water management and water resources system planning. To improve the prediction accuracy, one needs to strive to develop a reliable and accurate forecasting model for streamflow. In this study, the novel combination of the adaptive neuro-fuzzy inference system (ANFIS) model with the shuffled frog-leaping algorithm (SFLA) is proposed. Historical streamflow data of two different rivers were collected to examine the performance of the proposed model. To evaluate the performance of the proposed ANFIS-SFLA model, six different scenarios for the model input–output architecture were investigated. The results show that the proposed ANFIS-SFLA model (R2 = 0.88; NS = 0.88; RMSE = 142.30 (m3/s); MAE = 88.94 (m3/s); MAPE = 35.19%) significantly improved the forecasting accuracy and outperformed the classic ANFIS model (R2 = 0.83; NS = 0.83; RMSE = 167.81; MAE = 115.83 (m3/s); MAPE = 45.97%). The proposed model could be generalized and applied in different rivers worldwide.  相似文献   
26.
Sedimentary rocks of the section in the Red River fold zone of northern Viet Nam are considered. It is shown that secondary mineral parageneses formed in two stages. The first stage (35–17 Ma ago) corresponded to the period of structure extension and sediment subsidence to a depth of about 6 km. This period and subsequent 10 Ma were marked by the formation of a usual dia- and catagenetic zoning of metasedimentary rocks. The second stage (5–7 Ma ago) corresponded to processes of compression that were responsible for the deformation of rocks into gentle folds and 1.5 to 2.2 times contraction of the section thickness in different places. The sequential–mineralogical zoning was disturbed at this stage. Smectites and mixed-layer minerals were replaced by chlorites and hydromicas. Organic material also responded to compression simultaneously with inorganic components. The bituminous component was released from humic matter and rocks became enriched in hydrocarbons.  相似文献   
27.
In order to assess how the Bonin high affects interannual variability of the East Asian summer monsoon (EASM) around the Korean Peninsula, the pulsation of the Bonin high and its association with teleconnection patterns was examined. The major factor for the interannual intensity of the EASM is the center position of the Bonin high rather than its center pressure. Up to 12 harmonics over time can be used to reconstruct the Bonin high, demonstrating its intraseasonal variation. The interannual variability of the Bonin high correlates with the Tibet high. This correlation is dominant for the EASM onset time, though not its retreat. The primary teleconnection pattern, reliant up on the interannual variability of the Bonin high, is the Western Pacific oscillation (WPO) in April. In relation to long-term variability, the correlation between the WPO and the Bonin high appears to contribute to the retreat stage of the EASM, which has itself increased since the mid-1970s. Furthermore, the WPO in May and the Tibet correlation has marked the onset rather than the retreat of the EASM since the 1970s. This highly correlated pattern since the mid-1970s may be the result of El Niño.  相似文献   
28.
29.
Simulation of large deformation and post‐failure of geomaterial in the framework of smoothed particle hydrodynamics (SPH) are presented in this study. The Drucker–Prager model with associated and non‐associated plastic flow rules is implemented into the SPH code to describe elastic–plastic soil behavior. In contrast to previous work on SPH for solids, where the hydrostatic pressure is often estimated from density by an equation of state, this study proposes to calculate the hydrostatic pressure of soil directly from constitutive models. Results obtained in this paper show that the original SPH method, which has been successfully applied to a vast range of problems, is unable to directly solve elastic–plastic flows of soil because of the so‐called SPH tensile instability. This numerical instability may result in unrealistic fracture and particles clustering in SPH simulation. For non‐cohesive soil, the instability is not serious and can be completely removed by using a tension cracking treatment from soil constitutive model and thereby give realistic soil behavior. However, the serious tensile instability that is found in SPH application for cohesive soil requires a special treatment to overcome this problem. In this paper, an artificial stress method is applied to remove the SPH numerical instability in cohesive soil. A number of numerical tests are carried out to check the capability of SPH in the current application. Numerical results are then compared with experimental and finite element method solutions. The good agreement obtained from these comparisons suggests that SPH can be extended to general geotechnical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
30.
This study evaluated four possible cases of comparing radar and rain gauge rain rate for the detection of mean‐field bias. These four cases, or detection designs, consider in this study are: (1) design 1‐uses all the data sets available, including zero radar rain rate and zero rain gauge rain rate, (2) design 2—uses the data sets of positive radar rain rate and zero or positive rain gauge rain rate, (3) design 3—uses the data sets of zero or positive radar rain rate and positive rain gauge rain rate and (4) design 4—uses the data sets of positive radar rain rate and positive rain gauge rain rate. A theoretical review of these four detection designs showed that only the design 1 causes no design bias, but designs 2, 3 and 4 can cause positive, negative and negative design biases, respectively. This theoretical result was also verified by applying these four designs to the rain rate field generated by a multi‐dimensional rain rate model, as well as to that of the Mt Gwanak radar in Korea. The results from both applications showed that especially the design 4, which is generally used for the detection of mean‐field bias of radar rain rate, causes a serious design bias; therefore, is inappropriate as a design for detecting the mean‐field bias of radar rain rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号