首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121671篇
  免费   2109篇
  国内免费   1023篇
测绘学   2954篇
大气科学   8382篇
地球物理   23632篇
地质学   43672篇
海洋学   10990篇
天文学   27945篇
综合类   367篇
自然地理   6861篇
  2022年   794篇
  2021年   1348篇
  2020年   1455篇
  2019年   1641篇
  2018年   3435篇
  2017年   3221篇
  2016年   3862篇
  2015年   2063篇
  2014年   3753篇
  2013年   6407篇
  2012年   4000篇
  2011年   5216篇
  2010年   4673篇
  2009年   5952篇
  2008年   5215篇
  2007年   5259篇
  2006年   4876篇
  2005年   3619篇
  2004年   3613篇
  2003年   3415篇
  2002年   3320篇
  2001年   2849篇
  2000年   2741篇
  1999年   2225篇
  1998年   2317篇
  1997年   2104篇
  1996年   1869篇
  1995年   1824篇
  1994年   1574篇
  1993年   1459篇
  1992年   1397篇
  1991年   1423篇
  1990年   1417篇
  1989年   1201篇
  1988年   1157篇
  1987年   1309篇
  1986年   1188篇
  1985年   1448篇
  1984年   1626篇
  1983年   1509篇
  1982年   1414篇
  1981年   1305篇
  1980年   1204篇
  1979年   1169篇
  1978年   1112篇
  1977年   945篇
  1976年   916篇
  1975年   910篇
  1974年   871篇
  1973年   937篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
A flood of reliable seismic data will soon arrive. The migration to largertelescopes on the ground may free up 4-m class instruments for multi-sitecampaigns, and several forthcoming satellite missions promise to yieldnearly uninterrupted long-term coverage of many pulsating stars. We willthen face the challenge of determining the fundamental properties of thesestars from the data, by trying to match them with the output of ourcomputer models. The traditional approach to this task is to make informedguesses for each of the model parameters, and then adjust them iterativelyuntil an adequate match is found. The trouble is: how do we know that oursolution is unique, or that some other combination of parameters will notdo even better? Computers are now sufficiently powerful and inexpensivethat we can produce large grids of models and simply compare all ofthem to the observations. The question then becomes: what range ofparameters do we want to consider, and how many models do we want tocalculate? This can minimize the subjective nature of the process, but itmay not be the most efficient approach and it may give us a false sense ofsecurity that the final result is correct, when it is really justoptimal. I discuss these issues in the context of recent advances inthe asteroseismological analysis of white dwarf stars.  相似文献   
92.
93.
This paper describes a wide-field survey made at 34.5 MHz using GEETEE,1 the low frequency telescope at Gauribidanur (latitude 13°36′12′′N). This telescope was used in the transit mode and by per forming 1-D synthesis along the north-south direction the entire observable sky was mapped in a single day. This minimized the problems that hinder wide-field low-frequency mapping. This survey covers the declination range of-50° to + 70° (- 33° to +61° without aliasing) and the complete 24 hours of right ascension. The synthesized beam has a resolution of 26′ x 42′ sec (δ- 14°. 1). The sensitivity of the survey is 5 Jy/beam (1σ). Special care has been taken to ensure that the antenna responds to all angular scale structures and is suitable for studies of both point sources and extended objects This telescope is jointly operated by the Indian Institute of Astrophysics, Bangalore and the Roman Research Institute, Bangalore.  相似文献   
94.
R. A. Kopp  G. Poletto 《Solar physics》1990,127(2):267-280
Giant arches, first detected by the HXIS instrument aboard SMM, are still a poorly understood component of the flare scenario. Their origin remains uncertain and their behavior, quite different in separate events, has not yet been satisfactorily explained. The purpose of the present paper is to analyze the giant arches imaged on November 6–7, 1980, which, in contrast to that observed on May 21, 1980, were not stationary and had shorter cooling times. In particular, we use a procedure, already applied to the May 21 case, to compute the three-dimensional topology of the magnetic field which forms by reconnection over the active region containing the November arches. This technique allows us to verify that the observed structures are aligned with the computed field lines, lending support to the hypothesis that they originate through a reconnection process which occurs at progressively larger altitudes. Moreover, a calculation of the magnetic energy liberated by reconnection shows that enough energy may be thereby released to account for the observed thermal energy enhancement of the HXIS arches. Finally, the lifetime of the features is shown to be consistent with that predicted by cooling via radiation and field-aligned conduction to the underlying chromosphere.  相似文献   
95.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   
96.
Summary. Finite element models for shallow subduction produce realistic behaviour for a wide variety of mechanical strength and density distributions. Characteristic displacements are found to occur even without a discrete low-strength megathrust if there is a high-density subducted plate to localize lithospheric compression. A high-density plate is itself unnecessary in the presence of a low-strength megathrust and regional compression.
Successful finite element models produce an outer arc at the top of the trench slope, and forearc basin with geometry characteristic of natural analogues. These structural features occur by upward inelastic bending of the lithospheric wedge overlying the megathrust. This mechanically unstable behaviour may dissipate significant energy and cause the megathrust to migrate continuously by accretion, tectonic erosion, or abandonment and reinitiation farther offshore. Upward bending in the overriding plate is promoted by low megathrust dip, low megathrust shear strength, and high horizontal compression in the overriding plate.  相似文献   
97.
Byurakan Astrophysical Observatory. Translated from Astrofizika, Vol. 33, No. 2, pp. 271–281, September–October, 1990.  相似文献   
98.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
99.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
100.
The metasediments in the Chamba region experienced three phases of deformation: DF1, DF2 and DF3.Folded quartz veins are co-folded with the F2 crenulation folds. Their geometric and tectonic significance is studied by microstructures and shortening adjacent to the discrete crenulation cleavage, S2. Microstructures of folded vein segments, their geometric changes and truncation to cleavage (S2) are mainly due to pressure-solution phenomena and the estimated volume loss from reconstructed vein segments range from 16 to 25.5%,which is closely related to volume decrease (26%) calculated from the polydeformed slates of North Wales areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号