首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4921篇
  免费   210篇
  国内免费   52篇
测绘学   122篇
大气科学   408篇
地球物理   1124篇
地质学   1839篇
海洋学   352篇
天文学   876篇
综合类   17篇
自然地理   445篇
  2022年   28篇
  2021年   64篇
  2020年   68篇
  2019年   90篇
  2018年   142篇
  2017年   149篇
  2016年   152篇
  2015年   133篇
  2014年   185篇
  2013年   258篇
  2012年   203篇
  2011年   268篇
  2010年   212篇
  2009年   266篇
  2008年   213篇
  2007年   192篇
  2006年   177篇
  2005年   177篇
  2004年   187篇
  2003年   161篇
  2002年   161篇
  2001年   83篇
  2000年   89篇
  1999年   73篇
  1998年   92篇
  1997年   69篇
  1996年   65篇
  1995年   62篇
  1994年   57篇
  1993年   64篇
  1992年   46篇
  1991年   40篇
  1990年   40篇
  1989年   41篇
  1988年   47篇
  1987年   50篇
  1986年   47篇
  1985年   58篇
  1984年   69篇
  1983年   51篇
  1982年   57篇
  1981年   47篇
  1980年   49篇
  1979年   46篇
  1978年   44篇
  1977年   37篇
  1976年   32篇
  1975年   32篇
  1974年   34篇
  1973年   32篇
排序方式: 共有5183条查询结果,搜索用时 15 毫秒
151.
We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0–4 m), the shallow root zone (0–0.35 m), and the full sediment profile (0–6 m) in response to site hydrology (daily river stage and daily groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0–0.35 m], middle zone [0.35–4 m], and bottom zone [4–6]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly, with changes in soil elevation for the entire profile (Adjusted R2 = 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 = 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.  相似文献   
152.
Snow load on mesh systems is complicated by many factors. This paper presents field instrumentation data on snow load variation with temperature, snowfall and snow depth on a mesh system. It was found that snow load pattern on mesh systems changed with temperature even without variation in snow depth. It reached its maximum value when the temperature rose just above freezing to melt the interface. The field data was used to formulate appropriate snow load models for the various conditions of temperature in the field. The snow load models were used to study the performance of a number of mesh systems in North America and estimate the interface friction that was prevalent for the different surface conditions.  相似文献   
153.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
154.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
155.
156.
We review studies of the Holocene and Late Pleistocene stratigraphy of eastern Iran to infer past changes in the environment within this presently arid region. We build a scenario of widespread, and presumably climatically driven, evolution of the landscape through the Holocene. Six sites, covering a 10° range in latitude, indicate a regional abandonment of alluvial fan surfaces at ~10 ± 3 ka, with the younger (~9 ka) end of this age range supported by several of the best-constrained studies. Incision of rivers into the fan surfaces has occurred in discrete stages in the early to mid-Holocene (~9–7 ka) leading to the formation of flights of river terraces. Detailed records of lakebed deposition in the presently arid interior of Iran are rare, though the available data indicate lake highstand conditions at <7.8 ka at South Golbaf in SE Iran and at < 8.7 ± 1.1 ka at the Nimbluk plain in NE Iran. The major periods of Holocene landscape development hence correlate with a period of time where water was more abundant than at present, with incision of rivers into thick alluvial deposits possibly occurring due to a combination of decreased sediment supply and high levels of precipitation, and with the formation of inset river terraces possibly responding to century-scale fluctuations in precipitation. No major geomorphic changes are identified within the later part of the Holocene, from which we infer that increased aridity has slowed evolution of the landscape. A decrease in precipitation in the mid-Holocene may have had a detrimental effect on bronze age societies in eastern Iran as has been inferred elsewhere in the eastern Mediterranean region. The pre-Holocene environmental changes in eastern Iran are less well constrained, though there are suggestions of alluvial fan abandonment at 40–60 ka, at ~80 ka, and at ~120 ka.  相似文献   
157.
For two decades, the nature of Fe‐rich, oxygen‐bearing, Ru–Os compounds found in the supergene environment has been debated. Ru–Os–Fe‐oxides and nano‐intergrowths of ruthenium with magnetite have been proposed. We applied FE‐SEM, EMPA, μ‐Raman spectroscopy and synchrotron tts‐μXRD to Ru–Os–Fe compounds recovered from Ni‐laterites from the Dominican Republic. The results demonstrate that a significant portion of Fe exists in a common structure with the Ru–Os alloy, that is, ruthenian hexaferrum. This mineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe‐oxide(s). Our data suggest that supergene ruthenian hexaferrum with a (Ru0.4(Os,Ir)0.1Fe0.5)?1.0 stoichiometry represents the most advanced weathering product of primary laurite within Ni‐laterites from the Dominican Republic.  相似文献   
158.
159.
Climate Dynamics - The original version of the article contained errors in Fig.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号