首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5063篇
  免费   218篇
  国内免费   53篇
测绘学   122篇
大气科学   421篇
地球物理   1154篇
地质学   1915篇
海洋学   360篇
天文学   878篇
综合类   17篇
自然地理   467篇
  2022年   29篇
  2021年   66篇
  2020年   70篇
  2019年   93篇
  2018年   143篇
  2017年   150篇
  2016年   156篇
  2015年   136篇
  2014年   188篇
  2013年   279篇
  2012年   209篇
  2011年   275篇
  2010年   213篇
  2009年   270篇
  2008年   220篇
  2007年   195篇
  2006年   182篇
  2005年   175篇
  2004年   191篇
  2003年   163篇
  2002年   166篇
  2001年   85篇
  2000年   92篇
  1999年   77篇
  1998年   96篇
  1997年   70篇
  1996年   68篇
  1995年   64篇
  1994年   61篇
  1993年   66篇
  1992年   50篇
  1991年   42篇
  1990年   43篇
  1989年   48篇
  1988年   48篇
  1987年   52篇
  1986年   47篇
  1985年   61篇
  1984年   70篇
  1983年   54篇
  1982年   59篇
  1981年   50篇
  1980年   50篇
  1979年   49篇
  1978年   47篇
  1977年   42篇
  1976年   35篇
  1975年   34篇
  1974年   33篇
  1973年   33篇
排序方式: 共有5334条查询结果,搜索用时 31 毫秒
991.
Stability and dynamics of the continental tectosphere   总被引:1,自引:0,他引:1  
Continental cratons overlie thick, high-viscosity, thermal and chemical boundary layers, where the chemical boundary layers are less dense than they would be due to thermal effects alone, perhaps because they are depleted in basaltic constituents. If the continental tectosphere is the same age as the overlying Archaean crust, then the continental tectosphere must be able to survive for several billion years without undergoing a convective instability, despite being both cold and thick. Since platforms and shields correlate only weakly with Earth's gravity and geoid anomalies, acceptable models of the continental tectosphere must also satisfy this gravity constraint. We investigate the long-term stability of the continental tectosphere by carrying out a number of numerical convection experiments within a two-dimensional Cartesian domain. We initiate our experiments with a tectosphere (thermal and chemical boundary layers) immersed in a region of uniform composition, temperature, and viscosity, and consider the effects on the stability of the tectosphere of (1) activation energy (used to define the temperature dependence of viscosity), (2) compositional buoyancy, and (3) linear or non-linear rheology. The large lateral thermal gradients required to match oceanic and tectosphere structures initiate the dominant instability, a “drip” which develops at the side of the tectosphere and moves to beneath its center. High activation energies and high background viscosities restrict the amount and rate of entrainment. Compositional buoyancy does not significantly change the flow pattern. Rather, compositional buoyancy slows the destruction process somewhat and reduces the stress within the tectosphere. With a non-Newtonian rheology, this reduction in stress helps to stiffen the tectosphere. In these experiments, dynamical systems that adequately model the present ocean-continent structures have activation energy E*≥180 kJ mole−1 — a value about one third the estimate of activation energy for olivine, E*≈520 kJ mole−1. Although for E*≈520 kJ mole−1, compositional buoyancy is not required for the tectosphere to survive, the joint application of longevity and gravity constraints allows us to reject all models not containing compositional buoyancy, and to predict that the ratio of compositional to thermal buoyancy within the continental tectosphere is approximately unity.  相似文献   
992.
The composition of chromian spinel in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle. Using spinel compositions, alpine-type peridotites can be divided into three groups. Type I peridotites and associated volcanic rocks contain spinels with Cr#<0.60; Type III peridotites and associated volcanics contain spinels with Cr#>0.60, and Type II peridotites and volcanics are a transitional group and contain spinels spanning the full range of spinel compositions in Type I and Type II peridotites. Spinels in abyssal peridotites lie entirely within the Type I spinel field, making ophiolites with Type I alpine-type peridotites the most likely candidates for sections of ocean lithosphere formed at a midocean ridge. The only modern analogs for Type III peridotites and associated volcanic rocks are found in arc-related volcanic and intrusive rocks, continental intrusive assemblages, and oceanic plateau basalts. We infer a sub-volcanic arc petrogenesis for most Type III alpine-type peridotites. Type II alpine-type peridotites apparently reflect composite origins, such as the formation of an island-arc on ocean crust, resulting in large variations in the degree and provenance of melting over relatively short distances. The essential difference between Type I and Type III peridotites appears to be the presence or absence of diopside in the residue at the end of melting.Based on an examination of co-existing rock and spinel compositions in lavas, it appears that spinel is a sensitive indicator of melt composition and pressure of crystallization. The close similarity of spinel composition fields in genetically related basalts, dunites and peridotites at localities in the oceans and in ophiolite complexes indicates that its composition reflects the degree of melting in the mantle source region. Accordingly, we infer from the restricted range of spinel compositions in abyssal basalts that the degree of mantle melting beneath mid-ocean ridges is generally limited to that found in Type I alpine-type peridotites. It is apparent, therefore, that the phase boundary OL-EN-DI-SP +meltOL-EN-SP+melt has limited the degree of melting of the mantle beneath mid-ocean ridges. This was clearly not the case for many alpine-type peridotites, implying very different melting conditions in the mantle, probably involving the presence of water.  相似文献   
993.
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by “down-front” winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE’s velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE’s PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.  相似文献   
994.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   
995.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   
996.
Abstract

Sea-level allowances at 22 tide-gauge sites along the east coast of Canada are determined based on projections of regional sea-level rise for the Representative Concentration Pathway 8.5 (RCP8.5) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) and on the statistics of historical tides and storm surges (storm tides). The allowances, which may be used for coastal infrastructure planning, increase with time during the twenty-first century through a combination of mean sea-level rise and the increased uncertainty of future projections with time. The allowances show significant spatial variation, mainly a consequence of strong regionally varying relative sea-level change as a result of glacial isostatic adjustment (GIA). A methodology is described for replacement of the GIA component of the AR5 projection with global positioning system (GPS) measurements of vertical crustal motion; this significantly decreases allowances in regions where the uncertainty of the GIA models is large. For RCP8.5 with GPS data incorporated and for the 1995–2100 period, the sea-level allowances range from about 0.5?m along the north shore of the Gulf of St. Lawrence to more than 1?m along the coast of Nova Scotia and southern Newfoundland.  相似文献   
997.
A new scientific payload is introduced for fine-scale measurements of meteorological (wind vector, static air temperature, humidity, and air pressure) and microphysical (aerosol particles and cloud droplets) properties, suspended below a tethered balloon. The high resolution sensors and the tethered balloon are described. Measurements in a lifted fog layer from a first field campaign are presented.The detailed investigation of the fog/haze and the temperature inversion layer demonstrates the damping influence of the fog on temperature fluctuations, while thewind fluctuations are significantly decreased by theevolving temperature inversion, whichwas about 30 m above the fog layer.From spectral analysis the noise floors of the high-resolution sensors are determined to10-6 kg m-3 for the LWC (liquid water content) and 4 mK for the fast temperature sensor (UFT-B). The correlation betweentemperature and LWC structures in shallow haze layers is investigated. The release of latent heat and the corresponding warming in the haze of about 0.1 K could be quantified.  相似文献   
998.
Inverse-dispersion calculations can be used to infer atmospheric emission rates through a combination of downwind gas concentrations and dispersion model predictions. With multiple concentration sensors downwind of a compound source (whose component positions are known) it is possible to calculate the component emissions. With this in mind, a field experiment was conducted to examine the feasibility of such multi-source inferences, using four synthetic area sources and eight concentration sensors arranged in different configurations. Multi-source problems tend to be mathematically ill-conditioned, as expressed by the condition number κ. In our most successful configuration (average κ = 4.2) the total emissions from all sources were deduced to within 10% on average, while component emissions were deduced to within 50%. In our least successful configuration (average κ = 91) the total emissions were calculated to within only 50%, and component calculations were highly inaccurate. Our study indicates that the most accurate multi-source inferences will occur if each sensor is influenced by only a single source. A “progressive” layout is the next best: one sensor is positioned to “see” only one source, the next sensor is placed to see the first source and another, a third sensor is placed to see the previous two plus a third, and so on. When it is not possible to isolate any sources κ is large and the accuracy of a multi-source inference is doubtful.  相似文献   
999.
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the Sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to ±32%) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy. An extremophile canopy would have the maximum leaf area possible for given set of projections. Simple leaf projection measurements would then become a practical substitute for detailed measurements of the leaf angle distribution. This is not true if for a fraction of the canopy, the leaf normal projections fall in the non-solar quadrant. In this case, accurate and detailed information about the leaf orientation is required for assessing the penetration; the horizontal and vertical projections are inadequate for this purpose.  相似文献   
1000.
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.

Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号