首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4897篇
  免费   210篇
  国内免费   52篇
测绘学   122篇
大气科学   402篇
地球物理   1123篇
地质学   1828篇
海洋学   355篇
天文学   868篇
综合类   17篇
自然地理   444篇
  2022年   28篇
  2021年   63篇
  2020年   67篇
  2019年   90篇
  2018年   142篇
  2017年   149篇
  2016年   152篇
  2015年   133篇
  2014年   184篇
  2013年   259篇
  2012年   203篇
  2011年   267篇
  2010年   207篇
  2009年   261篇
  2008年   212篇
  2007年   189篇
  2006年   176篇
  2005年   174篇
  2004年   184篇
  2003年   161篇
  2002年   161篇
  2001年   81篇
  2000年   90篇
  1999年   77篇
  1998年   90篇
  1997年   68篇
  1996年   65篇
  1995年   62篇
  1994年   55篇
  1993年   64篇
  1992年   46篇
  1991年   40篇
  1990年   40篇
  1989年   42篇
  1988年   47篇
  1987年   51篇
  1986年   47篇
  1985年   59篇
  1984年   68篇
  1983年   56篇
  1982年   57篇
  1981年   47篇
  1980年   50篇
  1979年   47篇
  1978年   46篇
  1977年   38篇
  1976年   32篇
  1975年   32篇
  1974年   33篇
  1973年   32篇
排序方式: 共有5159条查询结果,搜索用时 250 毫秒
951.
Base-metal sulfides in magmatic Ni-Cu-PGE deposits are important carriers of platinum-group elements (PGE). The distribution and concentrations of PGE in pentlandite, pyrrhotite, chalcopyrite, and pyrite were determined in samples from the mineralized portion of four Merensky Reef intersections from the eastern and western Bushveld Complex. Electron microprobe analysis was used for major elements, and in situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for trace elements (PGE, Ag, and Au). Whole rock trace element analyses were performed on representative samples to obtain mineralogical balances. In Merensky Reef samples from the western Bushveld, both Pt and Pd are mainly concentrated in the upper chromitite stringer and its immediate vicinity. Samples from the eastern Bushveld reveal more complex distribution patterns. In situ LA-ICP-MS analyses of PGE in sulfides reveal that pentlandite carries distinctly elevated PGE contents, whereas pyrrhotite and chalcopyrite only contain very low PGE concentrations. Pentlandite is the principal host of Pd and Rh in the ores. Palladium and Rh concentrations in pentlandite reach up to 700 and 130 ppm, respectively, in the samples from the eastern Bushveld, and up to 1,750 ppm Pd and up to 1,000 ppm Rh in samples from the western Bushveld. Only traces of Pt are present in the base-metal sulfides (BMS). Pyrrhotite contains significant though generally low amounts of Ru, Os, and Ir, but hardly any Pd or Rh. Chalcopyrite contains most of the Ag but carries only extremely low PGE concentrations. Mass balance calculations performed on the Merensky Reef samples reveal that in general, pentlandite in the feldspathic pyroxenite and the pegmatoidal feldspathic pyroxenite hosts up to 100 % of the Pd and Rh and smaller amounts (10–40 %) of the Os, Ir, and Ru. Chalcopyrite and pyrrhotite usually contain less than 10 % of the whole rock PGE. The remaining PGE concentrations, and especially most of the Pt (up to 100 %), are present in the form of discrete platinum-group minerals such as cooperite/braggite, sperrylite, moncheite, and isoferroplatinum. Distribution patterns of whole rock Cu, Ni, and S versus whole rock Pd and Pt show commonly distinct offsets. The general sequence of “offset patterns” of PGE and BMS maxima, in the order from bottom to top, is Pd in pentlandite?→?Pd in whole rock?→?(Cu, Ni, and S). The relationship is not that straightforward in general; some of the reef sequences studied only partially show similar trends or are more complex. In general, however, the highest Pd concentrations in pentlandite appear to be related to the earliest, volumetrically rather small sulfide liquids at the base of the Merensky Reef sequence. A possible explanation for the offset patterns may be Rayleigh fractionation.  相似文献   
952.
Stability and dynamics of the continental tectosphere   总被引:1,自引:0,他引:1  
Continental cratons overlie thick, high-viscosity, thermal and chemical boundary layers, where the chemical boundary layers are less dense than they would be due to thermal effects alone, perhaps because they are depleted in basaltic constituents. If the continental tectosphere is the same age as the overlying Archaean crust, then the continental tectosphere must be able to survive for several billion years without undergoing a convective instability, despite being both cold and thick. Since platforms and shields correlate only weakly with Earth's gravity and geoid anomalies, acceptable models of the continental tectosphere must also satisfy this gravity constraint. We investigate the long-term stability of the continental tectosphere by carrying out a number of numerical convection experiments within a two-dimensional Cartesian domain. We initiate our experiments with a tectosphere (thermal and chemical boundary layers) immersed in a region of uniform composition, temperature, and viscosity, and consider the effects on the stability of the tectosphere of (1) activation energy (used to define the temperature dependence of viscosity), (2) compositional buoyancy, and (3) linear or non-linear rheology. The large lateral thermal gradients required to match oceanic and tectosphere structures initiate the dominant instability, a “drip” which develops at the side of the tectosphere and moves to beneath its center. High activation energies and high background viscosities restrict the amount and rate of entrainment. Compositional buoyancy does not significantly change the flow pattern. Rather, compositional buoyancy slows the destruction process somewhat and reduces the stress within the tectosphere. With a non-Newtonian rheology, this reduction in stress helps to stiffen the tectosphere. In these experiments, dynamical systems that adequately model the present ocean-continent structures have activation energy E*≥180 kJ mole−1 — a value about one third the estimate of activation energy for olivine, E*≈520 kJ mole−1. Although for E*≈520 kJ mole−1, compositional buoyancy is not required for the tectosphere to survive, the joint application of longevity and gravity constraints allows us to reject all models not containing compositional buoyancy, and to predict that the ratio of compositional to thermal buoyancy within the continental tectosphere is approximately unity.  相似文献   
953.
The composition of chromian spinel in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle. Using spinel compositions, alpine-type peridotites can be divided into three groups. Type I peridotites and associated volcanic rocks contain spinels with Cr#<0.60; Type III peridotites and associated volcanics contain spinels with Cr#>0.60, and Type II peridotites and volcanics are a transitional group and contain spinels spanning the full range of spinel compositions in Type I and Type II peridotites. Spinels in abyssal peridotites lie entirely within the Type I spinel field, making ophiolites with Type I alpine-type peridotites the most likely candidates for sections of ocean lithosphere formed at a midocean ridge. The only modern analogs for Type III peridotites and associated volcanic rocks are found in arc-related volcanic and intrusive rocks, continental intrusive assemblages, and oceanic plateau basalts. We infer a sub-volcanic arc petrogenesis for most Type III alpine-type peridotites. Type II alpine-type peridotites apparently reflect composite origins, such as the formation of an island-arc on ocean crust, resulting in large variations in the degree and provenance of melting over relatively short distances. The essential difference between Type I and Type III peridotites appears to be the presence or absence of diopside in the residue at the end of melting.Based on an examination of co-existing rock and spinel compositions in lavas, it appears that spinel is a sensitive indicator of melt composition and pressure of crystallization. The close similarity of spinel composition fields in genetically related basalts, dunites and peridotites at localities in the oceans and in ophiolite complexes indicates that its composition reflects the degree of melting in the mantle source region. Accordingly, we infer from the restricted range of spinel compositions in abyssal basalts that the degree of mantle melting beneath mid-ocean ridges is generally limited to that found in Type I alpine-type peridotites. It is apparent, therefore, that the phase boundary OL-EN-DI-SP +meltOL-EN-SP+melt has limited the degree of melting of the mantle beneath mid-ocean ridges. This was clearly not the case for many alpine-type peridotites, implying very different melting conditions in the mantle, probably involving the presence of water.  相似文献   
954.
超基性岩本身难以生长锆石的特性,使得研究其中的锆石需要特别谨慎。超基性岩中的锆石虽然具有多解性,但是锆石也携带了很多演化信息。产出不同地质背景的超基性岩,其中的锆石特征不同。本文总结现有的研究实例表明:(1)经历高温高压变质作用的石榴橄榄岩通常通过交代作用获得锆石,且锆石能够记录峰期变质时代,其中的继承锆石较少,可能在高温高压条件下,继承锆石发生分解重结晶;(2)大洋蛇绿岩型超基性岩和地幔岩捕掳体中通常具有年龄分布很广的锆石年龄特征,锆石年龄峰值通常与区域上构造事件相吻合,为捕掳晶锆石。接下来本文以西南天山超高压(UHP)蛇纹岩为例,对其锆石年龄进行解释。西南天山蛇纹岩为经历过超高压变质作用的大洋蛇绿岩型超基性岩,2个蛇纹岩样品中锆石的阴极发光图像分析和SIMS U-Pb定年分析结果显示,西南天山UHP蛇纹岩中的锆石包含捕掳晶锆石和变质锆石,捕掳晶锆石的年龄为2.1~1.0Ga,对应该区变泥质岩中碎屑锆石记录的年龄峰值。409~537Ma可能代表了蛇纹岩原岩结晶时代。区域上的变质压力峰期年龄(~320Ma)在蛇纹岩中没有记录,仅有1颗锆石记录了309±5Ma的近峰期时代。270~155Ma的退变质时代在西南天山蛇纹岩中出现较广,这与榴辉岩中出现的退变年龄相吻合,代表了折返过程中较为普遍的后期热液事件。基于对超基性岩中锆石特征的初步了解,结合西南天山蛇纹岩的研究实例,认为通过研究锆石的年代学,结合锆石矿物化学、包体矿物学、同位素地球化学等特征,不仅可以提供年代学信息,还可以对超基性岩的来源和演化过程进行解析。  相似文献   
955.
The easternmost stratovolcano along the Central American arc is El Valle volcano, Panama. Several andesitic and dacitic lava flows, which range in age 5–10 Ma, are termed the old group. After a long period of quiescence (approximately 3.4 Ma), volcanic activity resumed approximately 1.55 Ma with the emplacement of dacitic domes and the deposition of dacitic pyroclastic flows 0.9–0.2 Ma. These are referred to as the young group. All of the samples analyzed are calc-alkaline andesites and dacites. The mineralogy of the two groups is distinct; two pyroxenes occur in the old-group rocks but are commonly absent in the young group. In contrast, amphibole has been found only in the young-group samples. Several disequilibrium features have been observed in the minerals (e.g., oscillatory zoning within clinopyroxenes). These disequilibrium textures appear to be more prevalent among the old- as compared with the young-group samples and are most likely the result of magma-mixing, assimilation, and/or polybaric crystallization. Mass-balance fractionation models for major and trace elements were successful in relating samples from the old group but failed to show a relationship among the young-group rocks or between the old- and young-group volcanics. We believe that the old-group volcanics were derived through differentiation processes from basaltic magmas generated within the mantlewedge. The young group, however, does not appear to be related to more primitive magmas by differentiation. The young-group samples cannot be related by fractionation including realistic amounts of amphibole. Distinctive geochemical features of the young group, including La/Yb ratios〉15, Yb〈1, Sr/Y〉150, and Y〈6, suggest that these rocks were derived from the partial melting of the subducted lithosphere. These characteristics can be explained by the partial melting of a source with residual garnet and amphibole. Dacitic material with the geochemical characteristics of subducted-lithosphere melting is generated apparently only where relatively hot crust is subducted, based on recent work. The young dacite-genesis at El Valle volcano is related to the subduction of relatively hot lithosphere.  相似文献   
956.
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.

Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon.  相似文献   

957.
This study examines the forcing mechanisms driving long‐term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (north‐western Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X‐ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal bp . Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial‐scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and, consequently, enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment–water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another. Therefore, this investigation is a novel contribution to the carbon cycle in lacustrine systems.  相似文献   
958.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   

959.
Investigating the characteristics of model-forecast errors using various statistical and object-oriented methods is necessary for providing useful guidance to end-users and model developers as well. To this end, the random and systematic errors (i.e., biases) of the 2-m temperature and 10-m wind predictions of the NCAR-AirDat weather research and forecasting (WRF)-based real-time four-dimensional data assimilation (RTFDDA) and forecasting system are analyzed. This system has been running operationally over a contiguous United States (CONUS) domain at a 4-km grid spacing with four forecast cycles daily from June 2009 to September 2010. In the result an exceptionally useful forecast dataset was generated and used for studying the error properties of the model forecasts, in terms of both a longer time period and a broader coverage of geographic regions than previously studied. Spatiotemporal characteristics of the errors are investigated based on the 24-h forecasts between June 2009 and April 2010, and the 72-h forecasts between May and September 2010. It was found that the biases of both wind and temperature forecasts vary greatly seasonally and diurnally, with dependency on the forecast length, station elevation, geographical location, and meteorological conditions. The temperature showed systematic cold biases during the daytime at all station elevations and warm biases during the nighttime above 1,000 m above sea level (ASL), while below 600 m ASL cold biases occurred during the nighttime. The forecasts of surface wind speed exhibited strong positive biases during the nighttime, while the negative biases were observed in the spring and summer afternoons. The surface wind speed was mostly over-predicted except for the stations located between 1,000 and 2,100 m ASL, for which negative biases were identified for most forecast cycles. The highest wind-speed errors were found over the high terrain and near sea-level stations. The wind-direction errors were relatively large at the high-terrain elevation in the Rocky and Appalachian mountain ranges and the western coastal areas and the error structure exhibited notable diurnal variability.  相似文献   
960.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号