首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   8篇
地质学   9篇
海洋学   12篇
天文学   7篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.
Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites (“site” is largely confounded with “sub-species”), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.  相似文献   
12.
A high resolution analysis of benthic foraminifera as well as of aeolian terrigenous proxies extracted from a 37 m-long marine core located off the Mauritanian margin spanning the last ~ 1.2 Ma, documents the possible link between major continental environmental changes with a shift in the isotopic signature of deep waters around 1.0–0.9 Ma, within the so-called Mid-Pleistocene Transition (MPT) time period. The increase in the oxygen isotopic composition of deep waters, as seen through the benthic foraminifera δ18O values, is consistent with the growth of larger ice sheets known to have occurred during this transition. Deep-water mass δ13C changes, also estimated from benthic foraminifera, show a strong depletion for the same time interval. This drastic change in δ13C values is concomitant with a worldwide 0.3‰ decrease observed in the major deep oceanic waters for the MPT time period. The phase relationship between aeolian terrigeneous signal increase and this δ13C decrease in our record, as well as in other paleorecords, supports the hypothesis of a global aridification amongst others processes to explain the deep-water masses isotopic signature changes during the MPT. In any case, the isotopic shifts imply major changes in the end-member δ18O and δ13C values of deep waters.  相似文献   
13.
Jason-1 Altimeter Ground Processing Look-Up Correction Tables   总被引:1,自引:0,他引:1  
Poseidon-2 is the dual frequency radar altimeter embarked on the CNES/NASA oceanographic satellite Jason-1 that was launched on 7 December 2001. The primary objective of the Jason-1 mission is to continue the high accuracy time series of altimeter measurements that began with TOPEX in 1992. To achieve this goal, it is necessary to improve each component of the ground processing continually. Among these components are the look-up correction tables that are used to correct the estimations (range, significant waveheight, and sigma naught) issued from the retracking algorithms (on-board and ground). Look-up tables were first computed taking into account the prelaunch characteristics of the altimeter. They have to be updated to take into account better all the in-flight characteristics of the altimeter and all the updated ground algorithms that can impact the estimation process. The aim of this article is to describe the radar altimeter simulator of performances that has been used to compute look-up tables, to display the freshly computed look-up tables, and to discuss the consequences of these new corrections on the products provided to the users. The updated look-up correction tables allow improvement of SWH estimation, in particular with respect to TOPEX SWH data. It is also shown that no range dependency on SWH has to be looked for in these tables, and that the on-board TOPEX and Poseidon-2 tracking systems may contain the differences explaining the relative sea state bias between both altimeters.  相似文献   
14.
15.
16.
The chemical effects of terrestrial alteration, with a particular focus on lithophile trace elements, were studied for a set of H chondrites displaying various degrees of weathering from fresh falls to altered finds collected from hot deserts. According to their trace element distributions, a considerable fraction of rare earth elements (REEs), Th, and U resides within cracks observed in weathered meteorite specimens. These cracks appear to accumulate unbound REEs locally accompanied by Th and U relative to the major element abundances, especially P and Si. The deposition of Ce is observed in cracks in the case of most of the weathered samples. Trace element maps visually confirm the accumulation of these elements in such cracks, as previously inferred based on chemical leaching experiments. Because the positive Ce anomalies and unbound REE depositions in cracks occur in all weathered samples studied here while none of such features are observed in less altered samples including falls (except for altered fall sample Nuevo Mercurio), these features are interpreted to have been caused by terrestrial weathering following chemical leaching. However, the overall effects on the bulk chemical composition remain limited as the data for all Antarctic meteorites studied in this work (except for heavily weathered sample A 09516, H6) are in good agreement with published data for unaltered meteorites.  相似文献   
17.
Our understanding of monsoon circulation timing’s at the orbital scale is currently a matter of debate. Here, we compare previous and recently published results of Indian, East Asian, West African and East African monsoon variability. We note different timings between the East African, West African, Indian and East-Asian monsoon systems for the most recent 45 ka, where the age models are constrained by AMS dating. On this basis, we construct different orbital forcing “reference curves” and apply them to the 200 ka time period for the different monsoon systems. Our results indicate that the ‘global monsoon’ concept at the orbital scale is a misnomer. We find real regional differences in the timing of the monsoon response to orbital forcing and differences in the weight of precession and obliquity in the monsoon records. This work highlights the necessity of studies aimed at understanding the underlying physics of these regional response patterns. This is crucial to a better understanding of monsoon dynamics and improved climate model simulations and comparisons with proxy data.  相似文献   
18.
Oxygen and carbon isotopes (δ18O and δ13C) have been investigated in carbonate tests of deep-sea foraminifera living in the Mozambique Channel (eastern Africa) to understand how environmental constraints (e.g., organic matter, oxygenation) control the intra- and interspecific variability of isotopic signatures. 197 living individuals, including eight different species, from various microhabitats within the sediment were sorted from sediment samples gathered at two stations on the Malagasy upper slope. Results show that the δ18O values of foraminiferal taxa were not controlled by microhabitat pattern. They presented tremendous and intriguing intraspecific variability that is not explained by the classical ontogenetic effect. The δ13C values of infaunal foraminiferal taxa do not show a 1:1 relationship with the bottom water δ13C DIC and do not present a constant offset from it; instead, they appear to be mainly controlled by a microhabitat effect. The lower δ13C values of shallow, intermediate, and deep infaunal taxa at the deeper station compared to those seen at the shallower station reflect the enhanced exportation of sedimentary organic matter at the sediment–water interface, and its related mineralization within the upper sediments. The ?δ13C between shallow/very shallow infaunal species (i.e., Hoeglundina elegans, Uvigerina hispida) and intermediate/deep infaunal species (i.e., Melonis barleeanus, Globobulimina barbata) permits insight into (1) the exportation of organic matter to the seafloor and (2) the various degradation pathways for organic detritus in the benthic environments off NW Madagascar.  相似文献   
19.
Nonylphenol (NP) is a breakdown product of alkylphenol polyethoxylates (APEs), an important class of non-ionic surfactants that are widely used in many detergent formulations and plastic products for industrial and domestic use. A complex microbial degradation pattern, characterized by the formation of several metabolic products that are more toxic than the parent compound, has been established for APEs. We have studied the in vivo metabolism and organ distribution of NP in juvenile salmon. Fish were exposed to a single oral dose of [3H]-4-n-NP (1295 KBq, 25 micrograms) and sampled at 24, 48 and 72 h after exposure. Metabolites were separated by radio-high-performance liquid chromatography and tentatively identified by cochromatography with standards characterized by mass spectrometry. Our results show that 4-n-NP was mainly metabolized in vivo to its corresponding glucuronide conjugate and to a lesser extent to various hydroxylated and oxidated compounds. Biliary excretion at 72 h after dosing amounted to 2.83 +/- 0.75% of the administered radioactivity. Kinetic analysis shows that NP-glucuronide accounted for 83, 95 and 81% of total radioactivity in the HPLC-injected bile sample at 24, 48 and 72 h, respectively, after exposure. The half-life of residues in carcass and muscle was between 24 and 48 h after exposure.  相似文献   
20.
After two years of verification and validation activities of the Jason-1 altimeter data, it appears that all the mission specifications are completely fulfilled. Performances of all instruments embarked onboard the platform meet all the requirements of the mission. However, the star tracker system has shown some occasional abnormal behavior leading to mispointing angles out of the range of Jason-1 system specification which states that the altimeter antenna shall be pointed to the nadir direction with an accuracy below 0.2 degree (3 sigma). This article discusses the platform attitude angle and its consequences on the altimetric estimates. We propose improvements of the Jason-1 retracking process to better account for attitude effects.

The first star tracker anomalies for the Jason-1 mission were detected in April 2002. The Poseidon-2 algorithms were specified assuming an antenna off-nadir angle smaller than 0.3 degree. For higher values, the current method to estimate the ocean parameters is known to be inaccurate. Thus, the algorithm has to be reviewed, and more specifically, the present altimeter echo model has to be modified to meet the desired instrument performance.

Therefore, we derive a second order analytical model of the altimeter echo to take into account attitude angles up to 0.8 degree, and consequently, we adapt the retracking algorithm. This new model is tested on theoretical simulated data using a maximum likelihood estimation. Biases and noise performance characteristics are computed for the different estimated parameters. They are compared to the ones obtained with the current algorithm. This new method provides highly improved estimations for high attitude angles. It is statistically validated on real data by applying it on several cycles of Poseidon-2 raw measurements. The results are found to be consistent with those obtained from simulations. They also fully agree with the TOPEX estimates when flying along the same ground track. Finally, the estimates are also in agreement with the ones available in the current I/GDR (Intermediate Geophysical Data Record) products when mispointing lies in the mission specifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号