首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3236篇
  免费   106篇
  国内免费   25篇
测绘学   120篇
大气科学   371篇
地球物理   668篇
地质学   991篇
海洋学   347篇
天文学   609篇
综合类   4篇
自然地理   257篇
  2023年   11篇
  2022年   13篇
  2021年   35篇
  2020年   45篇
  2019年   47篇
  2018年   92篇
  2017年   70篇
  2016年   121篇
  2015年   68篇
  2014年   104篇
  2013年   157篇
  2012年   146篇
  2011年   177篇
  2010年   149篇
  2009年   207篇
  2008年   196篇
  2007年   164篇
  2006年   141篇
  2005年   120篇
  2004年   126篇
  2003年   118篇
  2002年   104篇
  2001年   84篇
  2000年   87篇
  1999年   74篇
  1998年   91篇
  1997年   58篇
  1996年   51篇
  1995年   34篇
  1994年   30篇
  1993年   36篇
  1992年   24篇
  1991年   38篇
  1990年   14篇
  1989年   20篇
  1988年   10篇
  1987年   23篇
  1986年   12篇
  1985年   22篇
  1984年   29篇
  1983年   24篇
  1982年   18篇
  1981年   10篇
  1980年   15篇
  1979年   11篇
  1978年   10篇
  1977年   11篇
  1976年   14篇
  1975年   14篇
  1973年   9篇
排序方式: 共有3367条查询结果,搜索用时 0 毫秒
11.
Numerical models produce output with a large number of variables, grid cells and time steps. The same applies to algorithms that produce gridded datasets from sparse or abundant raw data. Further use of the resulting data products has been challenging, especially for dissemination outside the institute of origin. Due to the gradually increasing size of data products, simply downloading copies of them is becoming impossible. A gradual transition from traditional download methods to web services is therefore observed. Web services allow for on‐the‐fly access to subsets of data that were hitherto considered as indivisible granules. Here we compare the most mature candidates to serve gridded data through the web: the Open‐source Project for a Network Data Access Protocol (OPeNDAP) and Web Coverage Service (WCS) protocols. In the framework of the new Dutch National Model and Data Centre (NMDC.eu) a distributed data storage has been created by coupling OPeNDAP servers. A WCS service layer is provided for the same data. This allows us to compare OPeNDAP and WCS. Using several use cases, we compare the usability, performance and features of the two protocols.  相似文献   
12.
Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package ( http://code.google.com/p/eo4vistrails/ ). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.  相似文献   
13.
Agent-based simulation has become an important modeling approach in activity-travel analysis. Social activities account for a large amount of travel and have an important effect on activity-travel scheduling. Participants in joint activities usually have various options regarding location, participants, and timing and take different approaches to make their decisions. In this context, joint activity participation requires negotiation among agents involved, so that conflicts among the agents can be addressed. Existing mechanisms do not fully provide a solution when utility functions of agents are nonlinear and non-monotonic. Considering activity-travel scheduling in time and space as an application, we propose a novel negotiation approach, which takes into account these properties, such as continuous and discrete issues, and nonlinear and non-monotonic utility functions, by defining a concession strategy and a search mechanism. The results of experiments show that agents having these properties can negotiate efficiently. Furthermore, the negotiation procedure affects individuals’ choices of location, timing, duration, and participants.  相似文献   
14.
Pleistocene to present evaporitic lacustrine sediments in Lake Magadi, East African Rift Valley, Kenya were studied and mapped using spectral remote sensing methods. This approach incorporated surface mineral mapping using space-borne hyperspectral Hyperion imagery together with laboratory analysis, including visible, near-infrared diffuse reflectance spectroscopy (VNIR) measurements and X-ray diffraction for selected rock and soil samples of the study area. The spectral signatures of Magadiite and Kenyaite, which have not been previously reported, were established and the spectral signatures of trona, chert series, volcanic tuff and the High Magadi bed were also analyzed.Image processing techniques, MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) using a stratified approach (image analysis with and without the lake area), were used to enhance the mapping of evaporates. High Magadi beds, chert series and volcanic tuff were identified from the Hyperion image with an overall mapping accuracy of 84.3%. Even though, the spatial distribution of evaporites and sediments in Lake Magadi area change in response to climate variations, the mineralogy of this area has not been mapped recently. The results of this study shows the usefulness of the hypersspectral remote sensing to map the surface geology of this kind of environment and to locate promising sites for industrial open-pit trona mining in a qualitative and quantitative manner.  相似文献   
15.
Recently a national 3D standard was established in the Netherlands as a CityGML Application Domain Extension (called IMGeo). In line with the Dutch practice of modeling geo‐information, the ADE is developed using a model driven approach. The classes are designed in UML and automatically mapped to GML schema. The current OGC CityGML specification does not provide rules or guidance on correctly modeling an ADE in UML. This article fills this gap by studying how CityGML can be extended for specific applications starting from the UML diagrams. Six alternatives for modeling ADEs in UML are introduced and compared. The optimal alternative is selected and applied to obtain the national 3D standard. The approach was extensively discussed with international experts, who were members of both SIG3D and other working groups. As a consequence the approach was adopted by the SIG3D, the Special Interest Group 3D which, among other things, work on the 3D standard CityGML in cooperation with OGC. Therefore the approach contains many issues that can be generalized and reused by future domain extensions of CityGML. To further support this, the article formulates a model‐driven framework to model CityGML ADEs. Open issues are described in the conclusions.  相似文献   
16.
Abstract

Image mapping using data from visible and infrared sensors has, as a major drawback, the frequent cloud cover experienced in many countries. This is one of the main reasons why topographic maps at 1:100,000 scale and larger are often outdated. The results of a study which investigated the possibilities of fusing up‐to‐date spaceborne microwave data with existing images from optical sensors for topographic map updating at a scale of 1:100, 000 are presented in this paper. A key issue researched was the influence of geometric distortions and corrections of remote sensing data on the results of pixel based digital image fusion. After having terrain‐geocoded and radiometrically enhanced imagery from the Landsat, SPOT, ERS‐1 and JERS‐1 satellites, the data were fused applying a variety of colour transformation techniques as well as statistical or arithmetic methods. Initially, the image fusion was implemented using images covering a test site in the north of The Netherlands in order to calibrate specified combinations and techniques in a rather flat area. With the experience gained, the remote sensing data acquired over the research site were processed. The research test site is located in a typical Developing Country in the humid Tropics, on the mountainous south‐west coast of Sumatra in Indonesia. The results of the various applied techniques and image combinations were evaluated with reference to their capability to overcome the cloud cover problem. New combinations of techniques and images were developed as result of an optimisation process. The research produced two prototypes of annotated 1:100,000 scale image maps containing fused, cloud‐free optical/microwave imagery.  相似文献   
17.
This paper introduces a new method for GPS signal acquisition, which is based on the repeatability of successive code phase measurements and the M-of-N search algorithm. The performance of the proposed method in terms of probability of signal detection is similar to that of traditional methods, except that the calculation of the probability of detection does not rely on the noise distribution or the Carrier-to-Noise ratio (C/N0). The code phase repeatability-based method is presented along with equations for probability of detection and probability of false detection. If the distribution of the noise is known, it also provides an estimate of the C/N0. The proposed method is illustrated for coherent and non-coherent acquisition and C/N0 estimation.  相似文献   
18.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:4,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   
19.
Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation makes continuous mapping a complex task. Imaging spectroscopy has proven to be an useful technique for mapping of soil properties, but the applicability decreases rapidly when fields are partially covered with vegetation. In this paper we show that with only a few percent fractional maize cover the accuracy of a Partial Least Square Regression (PLSR) based SOC prediction model drops dramatically. However, this problem can be solved with the use of spectral unmixing techniques. First, the fractional maize cover is determined with linear spectral unmixing, taking the illumination and observation angles into account. In a next step the influence of maize is filtered out from the spectral signal by a new procedure termed Residual Spectral Unmixing (RSU). The residual soil spectra resulting from this procedure are used for mapping of SOC using PLSR, which could be done with accuracies comparable to studies performed on bare soil surfaces (Root Mean Standard Error of Calibration = 1.34 g/kg and Root Mean Standard Error of Prediction = 1.65 g/kg). With the presented RSU approach it is possible to filter out the influence of maize from the mixed spectra, and the residual soil spectra contain enough information for mapping of the SOC distribution within agricultural fields. This can improve the applicability of airborne imaging spectroscopy for soil studies in temperate climates, since the use of the RSU approach can extend the flight-window which is often constrained by the presence of vegetation.  相似文献   
20.
In recent years, a number of alternative methods have been proposed to predict forest canopy density from remotely sensed data. To date, however, it remains difficult to decide which method to use, since their relative performance has never been evaluated. In this study the performance of: (1) an artificial neural network, (2) a multiple linear regression, (3) the forest canopy density mapper and (4) a maximum likelihood classification method was compared for prediction of forest canopy density using a Landsat ETM+ image. Comparison of confusion matrices revealed that the regression model performed significantly worse than the three other methods. These results were based on a z-test for comparison of weighted kappa statistics, which is an appropriate statistic for analysis of ranked categories. About 89% of the variance of the observed canopy density was explained by the artificial neural networks, which outperformed the other three methods in this respect. Moreover, the artificial neural networks gave an unbiased prediction, while other methods systematically under or over predicted forest canopy density. The choice of biased method could have a high impact on canopy density inventories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号