首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   34篇
地质学   7篇
海洋学   18篇
天文学   28篇
自然地理   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   9篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1991年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1976年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
71.
72.
A stationary state of production of solid material in the coma of a comet is sought by assuming a production and dynamics of solid grains liberated during the vaporization of cometary nuclei under the action of solar radiation.  相似文献   
73.
A magnetohydrodynamic (MHD) approach is presented that appears to be comprehensive for the interpretation of the recently discovered microwave solar events, in which only the degree of circular polarization changes, without any increase in the output of the total solar flux. On the basis of this explanation experimental evidence is suggested for Alfvén waves, in relation to the velocity fields in the solar chromosphere.  相似文献   
74.
 At Shiotani, SW Japan, rhyolitic welded tuff forms a steep-sided funnel-shaped body, confined by Paleogene granitic rocks to an elliptical area 1–1.5 km across. The Shiotani welded tuff is pervasively welded and foliated concordantly with the contact that dips inward at angles of 70–90°. In contrast, nearby contemporary volcaniclastic deposits are non-welded and gently inclined. Near the contact with the granite, the tuff is plastically deformed and shows lineations that plunge inward at angles of 40–65°. Lithic and crystal clasts in the rheomorphic outer part are rotated in a plane normal to the foliations and parallel to the lineations indicating downward flow of the welded tuff. The geometry and internal structures suggest that the Shiotani welded tuff was emplaced and welded in a funnel-shaped eruption conduit. Upon collapse of a plinian or phreatoplinian eruption column, the majority of the conduit-filling pyroclasts probably fell back en masse into the conduit. Heat and steam from underlying magma and diffusion of interstitial volatiles into the glass perhaps reduced the viscosity of juvenile pyroclasts and facilitated welding in the conduit, especially at deep levels. The hot welded pyroclasts then flowed down the conduit wall during welding compaction and retreat of the magma. These processes resulted in increased welding toward the contacts and welding foliations concordant with the steep wall. Emplacement of nearby correlative volcaniclastic mass-flow deposits in a shelf to upper bathyal environment suggests a possibility that, when active, the Shiotani conduit was under the sea. Welding compaction would occur even under the sea provided that the steam generated in the upper part of the conduit fill prevented water access. Received: 28 February 1996 / Accepted: 5 May 1997  相似文献   
75.
The authors developed a semi‐active hydraulic damper (SHD) and installed it in an actual building in 1998. This was the first application of a semi‐active structural control system that can control a building's response in a large earthquake by continuously changing the device's damping coefficient. A forced vibration test was carried out by an exciter with a maximum force of 100 kN to investigate the building's vibration characteristics and to determine the system's performance. As a result, the primary resonance frequency and the damping ratio of a building that the SHDs were not jointed to, decreased as the exciting force increased due to the influence of non‐linear members such as PC curtain walls. The equivalent damping ratio was estimated by approximating the resonance curves using the steady‐state response of the SDOF bilinear hysteretic system. After the eight SHDs were jointed to the building, the system's performance was identified by a response control test for steady‐state vibration. The elements that composed the semi‐active damper system demonstrated the specified performance and the whole system operated well. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
76.
A predictability study on wave forecast of the Arctic Ocean is necessary to help identify hazardous areas and ensure sustainable shipping along the trans-Arctic routes. To assist with validation of the Arctic Ocean wave model, two drifting wave buoys were deployed off Point Barrow, Alaska for two months in September 2016. Both buoys measured significant wave heights exceeding 4 m during two different storm events on 19 September and 22 October. The NOAA-WAVEWATCH III? model with 16-km resolution was forced using wind and sea ice reanalysis data and obtained general agreement with the observation. The September storm was reproduced well; however, model accuracy deteriorated in October with a negative wave height bias of around 1 m during the October storm. Utilising reanalysis data, including the most up-to-date ERA5, this study investigated the cause: grid resolution, wind and ice forcing, and in situ sea level pressure observations assimilated for reanalysis. The analysis has found that there is a 20% reduction of in situ SLP observations in the area of interest, presumably due to fewer ships and deployment options during the sea ice advance period. The 63-member atmospheric ensemble reanalysis, ALERA2, has shown that this led to a larger ensemble spread in the October monthly mean wind field compared to September. Since atmospheric physics is complex during sea ice advance, it is speculated that the elevated uncertainty of synoptic-scale wind caused the negative wave model bias. This has implications for wave hindcasts and forecasts in the Arctic Ocean.  相似文献   
77.
A control algorithm has been developed for controlling Active Variable Stiffness (AVS) structures. This algorithm analyses information of an observed seismic excitation, estimates the future structural responses and determines how to alter the structure stiffness. An objective structure is assumed to possess N on-off elements whose states are controlled by the proposed algorithm. That is, at a given moment tk, (1) seismic excitation information is expressed by an Auto Regressive (AR) model as the identification model; (2) future excitation information is predicted using the AR model; (3) future responses due to predicted excitation are estimated; (4) based on the initial condition at tk, the responses of 2N possible structural states from tk, to tk+L are calculated; (5) the state which minimizes the input energy during tL is selected; and (6) immediately after tk, on-off elements are set up and subjected to the selected states. The effectiveness of the induced algorithm is confirmed by numerical experiments on a model of a three-storey building under sine and seismic excitations.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号