This article shows the potential impact on global GHG emissions in 2030, if all countries were to implement sectoral climate policies similar to successful examples already implemented elsewhere. This assessment was represented in the IMAGE and GLOBIOM/G4M models by replicating the impact of successful national policies at the sector level in all world regions. The first step was to select successful policies in nine policy areas. In the second step, the impact on the energy and land-use systems or GHG emissions was identified and translated into model parameters, assuming that it would be possible to translate the impacts of the policies to other countries. As a result, projected annual GHG emission levels would be about 50 GtCO2e by 2030 (2% above 2010 levels), compared to the 60 GtCO2e in the ‘current policies’ scenario. Most reductions are achieved in the electricity sector through expanding renewable energy, followed by the reduction of fluorinated gases, reducing venting and flaring in oil and gas production, and improving industry efficiency. Materializing the calculated mitigation potential might not be as straightforward given different country priorities, policy preferences and circumstances.
Key policy insights
Considerable emissions reductions globally would be possible, if a selection of successful policies were replicated and implemented in all countries worldwide.
This would significantly reduce, but not close, the emissions gap with a 2°C pathway.
From the selection of successful policies evaluated in this study, those implemented in the sector ‘electricity supply’ have the highest impact on global emissions compared to the ‘current policies’ scenario.
Replicating the impact of these policies worldwide could lead to emission and energy trends in the renewable electricity, passenger transport, industry (including fluorinated gases) and buildings sector, that are close to those in a 2°C scenario.
Using successful policies and translating these to policy impact per sector is a more reality-based alternative to most mitigation pathways, which need to make theoretical assumptions on policy cost-effectiveness.
An Active Mass Driver (AMD) system is proposed to suppress actively the response of a building to irregular external excitations such as earthquakes and typhoons.1 This system has been introduced to an actual ten-storey office building constructed in Tokyo in August, 1989. The proposed analytical methods utilize circuits of the system and mechanical characteristics to understand the real control effect of the system. Simulation analyses are also performed to verify the analytical model and the control effect during observed earthquakes. 相似文献
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall. 相似文献
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover. 相似文献
We report on the ability for luxury Fe uptake and the potential for growth utilizing intracellular Fe pools for 4 coastal
centric diatom isolates and in situ phytoplankton assemblages, mainly composed of diatoms. Iron uptake of the diatom isolates
and natural phytoplankton assemblages in the Oyashio region during spring blooms were prevented by adding hydroxamate siderophore
desferrioxamine B (DFB). After the addition of DFB, intracellular Fe in the diatom isolates supported 2.4–4.2 cell divisions
with 1.2–2.6 Chl a doublings. The intracellular Fe was primarily used for cell generation rather than Chl a production, leading to a reduction in the Chl a cell quota in the Fe-starved cells with time. The metabolic properties of the Fe-starved cells with their cell morphologies
were different among species or genera. An on-deck incubation experiment also exhibited 1.9 cell divisions and 0.81 Chl a doublings of phytoplankton after the addition of DFB, also indicating the preference of cell generation over Chl a production. A decrease in the level of cellular Chl a, a main light-harvesting pigment in Fe-starved diatoms, may become a superior survival strategy to protect the cells from
high irradiance that can cause photo-oxidative damages through photosynthesis. Such relatively low-Fe with high-light conditions
could often occur in surface waters of the Oyashio region from spring to summer. 相似文献
The nature of the reduction trend and quasi-decadal oscillation in Northern Hemisphere sea-ice extent is investigated. The trend and oscillation that seem to be two separate phenomena have been found in data. This study examines a hypothesis that the Arctic sea-ice reduction trend in the last three decades amplified the quasi-decadal Arctic sea-ice oscillation (ASIO) due to a positive ice/ocean-albedo feedback, based on data analysis and a conceptual model proposed by Ikeda et al. The theoretical, conceptual model predicts that the quasi-decadal oscillation is amplified by the thinning sea-ice, leading to the ASIO, which is driven by the strong positive feedback between the atmosphere and ice-ocean systems. Such oscillation is predicted to be out-of-phase between the Arctic Basin and the Nordic Seas with a phase difference of 3/4, with the Nordic Seas leading the Arctic. The wavelet analysis of the sea ice data reveals that the quasi-decadal ASIO occurred actively since the 1970s following the trend starting in the 1960s (i.e., as sea-ice became thinner and thinner), as the atmosphere experienced quasi-decadal oscillations during the last century. The wavelet analysis also confirms the prediction of such out-of-phase feature between these two basins, which varied from 0.62 in 1960 to 0.25 in 1995. Furthermore, a coupled ice-ocean general circulation model (GCM) was used to simulate two scenarios, one without the greenhouse gas warming and the other having realistic atmospheric forcing along with the warming that leads to sea-ice reduction trend. The quasi-decadal ASIO is excited in the latter case compared to the no-warming case. The wavelet analyses of the simulated ice volume were also conducted to derive decadal ASIO and similar phase relationship between the Arctic Ocean and the Nordic Seas. An independent data source was used to confirm such decadal oscillation in the upper layer (or freshwater) thickness, which is consistent with the model simulation. A modified feedback loop for the sea-ice trend and ASIO was proposed based on the previous one by Mysak and Venegas and the ice/albedo and cloud/albedo feedabcks, which are responsible for the sea ice reduction trend. 相似文献
A high‐temperature (T) metamorphic complex occurs in the Omuta district, northern Kyushu, Japan. Three metamorphic zones are defined based on pelitic mineral assemblage, i.e. chlorite–biotite zone, muscovite–andalusite zone and sillimanite–K‐feldspar zone with ascending metamorphic grade from north to south. Two isograds trend approximately east–west, which is oblique to the boundary between the metamorphic complex and the Tamana Granodiorite located on the southeast. The metamorphic condition of two pelitic rocks that occur in the muscovite–andalusite zone and sillimanite–K‐feldspar zone are estimated as 510 ±30 °C, 300 ±60 MPa and 720 ±30 °C, 620 ±60 MPa, respectively. Thermodynamic consideration reveals that use of the same geothermobarometer enables precise determination of the difference in pressure between the samples as 320 ±10 MPa. This indicates that the pelitic samples were metamorphosed at different depth by 11–12 km that is significantly larger than the geographic distance of 6.8 km between the sample localities. This also suggests that crustal thinning took place after the high‐T metamorphism. The high‐T metamorphic complex is, therefore, not of static contact metamorphism but of dynamic regional metamorphism. The present result combined with petrological and chronological similarities implies that this complex suffered the regional Ryoke metamorphism. 相似文献
Seven rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) and Co, Cr, Sc, Ba, Hf and Th have been determined by non-destructive neutron activation analysis on the Quaternary volcanic rocks in Hokkaido, Japan. The trace-element abundances are discussed in terms of the petrological problems, particularly the origin of calc-alkali magma. On the basis of the La/Sm ratio and the contents of K, Ba, Th and La, lateral variations in the contents of trace elements exist across the Kurile and the northern Honshū arcs. The calc-alkali rocks can be classified into three types which correspond to Kuno's three basalt-magma types. There is no essential difference in the rare-earth patterns between the basaltic rocks and the associated calc-alkali rocks in each petrographic province. This suggests that the calcalkali rocks may be derived from the basaltic magmas by fractional crystallization under certain conditions. 相似文献
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin. 相似文献