首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   7篇
  国内免费   3篇
测绘学   2篇
大气科学   8篇
地球物理   41篇
地质学   47篇
海洋学   51篇
天文学   29篇
综合类   1篇
自然地理   18篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   9篇
  2013年   8篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   10篇
  2008年   11篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   2篇
  2003年   12篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1970年   1篇
  1961年   2篇
排序方式: 共有197条查询结果,搜索用时 46 毫秒
191.
Physical and chemical properties of two 100 m sediment cores (BDP-93-1, 93-2) obtained from the Buguldeika saddle of Lake Baikal in the eastern Siberia and a 14C-based age scale for the core show that the core bottom is about 400000 years ago and that the changes in the sedimentological environment of the area during the interval were that comparatively coarse and high C/N ratio sediments accumulated in the lake during interglacial periods, and fine material and low C/N ratio during glacial periods. The tentative age scale suggests that the first excursion in the earth's magnetic field at about 26 m (BDP-93-1 and 93-2) from the sediment surface corresponds to the Blake event. Statistical analyses of the data-sets for the some properties show that the fluctuations have distinct periods; 20000 years, 40000 years and 100000 years, that are related to the Milankovitch parameters and support that the tentative age scale is approximately acceptable.  相似文献   
192.
Structure of air flow separation over wind wave crests   总被引:1,自引:0,他引:1  
Air flow over wind waves generated in a wind-wave tunnel was visualized by numerous tiny suspended particles (zinc stearate), and instantaneous air flow fields over about one wavelength of wind waves were obtained. Air flow separation was detected over the wave crest in about a half of the samples. In such cases, the separation started near the crest about half of the time, with a vortex trapped over the convergence point of the surface flow which appeared at the leeward face of the crest. This structure was much different from a previously imagined picture in which the separation started at the convergence point. The high frequency of its occurrence suggested the stability of this structure. However, even when this structure was clearly seen, the structure behind the vortex to the next wave crest had various patterns. This variety seems to be related to an instability of the high-shear layer accompanied by separation. Other varieties were also seen, such as the occurrence of separation without the above mentioned structure, as well as the existence of non-separated air flow structures. These varieties seem to be related to the variability of individual wind wave crests. An analysis of correlation between the wave form and the air flow structure over it shows that there is a critical value of local gradient of wave form, above which the air flow always separates. This fact suggests a strong coupling between the air and the water, i.e., the local stress exerted on the water surface changes the nature of a wave crest, especially its form, and as a result, the air flow structure over it changes drastically.Decreased 21 November, 1981. Final draft of the paper prepared by Professor Yoshiaki Toba, Geophysical Institute, Tohoku University.  相似文献   
193.
This paper synthesizes the state-of-the art of the various laboratory testing techniques presently available for measuring the water hydraulic constitutive functions of unsaturated soils. Emphasis is on the laboratory testing techniques for measuring the soil–water retention curves and the water hydraulic conductivity functions of unsaturated soils. The significant recent advances in the investigation of the hydraulic behaviour of unsaturated swelling soils, are also presented. Comprehensive recent references on each measurement method are listed and discussed.  相似文献   
194.
Wind-wave tunnel experiments reveal, by use of techniques of the flow visualization, that wind waves are accompanied by the wind drift surface current with large velocity shear and with horizontal variation of velocity relative to the wave profile. The surface current converges from the crest to a little leeward face of the crest, making a downward flow there, even though the wave is not breaking. Namely, wind waves are accompanied by forced convections relative to the crests of the waves. Since the location of the convergence and the downward flow travels on the water surface as the crest of the wave propagates, the motion as a whole is characterized by turbulent structure as well as by the nature of water-surface waves. In this meaning, the term of real wind waves is proposed in contrast with ordinary water waves. The study of real wind waves will be essential in future development of the study of wind waves.  相似文献   
195.
Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral.
Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids.  相似文献   
196.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   
197.
A high-resolution downward surface solar radiation (DSSR) dataset has been produced using geostationary meteorological satellite measurements. Its validation with in situ observations shows that the daily satellite DSSRs are highly accurate. Comparing the satellite DSSRs with reanalysis DSSR datasets, the former has higher probability density in a low value range, and lower density in a high value range. Overestimations of the reanalysis DSSR are significant in the low range. Correlations between the reanalysis DSSRs and the satellite DSSR are relatively low in the tropics. It is suggested that the satellite DSSRs have good potential to capture cloud behavior in the tropics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号