首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   22篇
  国内免费   7篇
测绘学   4篇
大气科学   22篇
地球物理   143篇
地质学   159篇
海洋学   161篇
天文学   150篇
综合类   10篇
自然地理   47篇
  2021年   5篇
  2020年   6篇
  2019年   16篇
  2018年   9篇
  2017年   23篇
  2016年   15篇
  2015年   10篇
  2014年   29篇
  2013年   27篇
  2012年   16篇
  2011年   25篇
  2010年   23篇
  2009年   29篇
  2008年   28篇
  2007年   35篇
  2006年   32篇
  2005年   31篇
  2004年   42篇
  2003年   19篇
  2002年   20篇
  2001年   30篇
  2000年   22篇
  1999年   12篇
  1998年   15篇
  1997年   16篇
  1996年   13篇
  1995年   7篇
  1994年   4篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   4篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1963年   2篇
排序方式: 共有696条查询结果,搜索用时 31 毫秒
671.
672.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   
673.
Concentrations of total arsenic and individual arsenic compounds were determined in livers of cetaceans (Dall's porpoise and short-finned pilot whale), pinnipeds (harp and ringed seals), sirenian (dugong), and sea turtles (green and loggerhead turtles) to characterize arsenic accumulation profiles in higher trophic marine animals. Hepatic arsenic concentrations in sea turtles were highest among the species examined. Chemical speciation of arsenic revealed that arsenobetaine was the major arsenic compound in almost all the species. In contrast, arsenobetaine was a minor constituent in dugong. Dimethylarsinic acid, methylarsonic acid, arsenocholine, tetramethylarsonium ion, arsenite, and an unidentified arsenic compound were also detected as minor constituents. However, the composition of arsenic compounds was different among these species. These results might reflect the differences in the metabolism of arsenic and/or the compositions of arsenic compounds in their preys. To our knowledge, this is the first report on the large variation in the composition of arsenic species in liver of marine mammals and sea turtles.  相似文献   
674.
675.
The behavior of a granite subject to a triaxial compression test ranging from the prefailure stage to the postfailure stage was studied using a fluorescent technique from the geological point of view. Microscopic observations of the specimens at different stages showed changes in the failure process. The start of formation of new microcracks paralleled the compression direction through their propagation until the onset of faulting and ended with the failure of shear zones after the strength failure point. Pores chiefly identified in the feldspar increased in length and width in the early stages, but not in number. It seems that the effect of pore spaces did not have any effect of failure. The microcracks generated on angular edges of quartz or feldspar grains and around biotite grains with increasing compression force. The phenomenon appearing on the crystal boundaries among biotite and quartz or feldspar agrees with the result calculated based on the theory on stress fields with ellipsoidal inhomogeneity suggested by Eshelby.  相似文献   
676.
Hydrographic measurements by CTD were made in the western-central Equatorial Pacific (160°W–147°E) during the Japanese Pacific Climate Study cruise in January–February 1991. InT-S diagram, three water masses are seen in the layer of kg/m3: salinity water corresponding to the Tropical Water of eastern South Pacific origin, less saline water in the North Pacific, and water with salinity between the above two, found on the equator. In three meridional sections (160°W–160°E), the Tropical Water of eastern South Pacific origin extends further equatorward than the climatological data of Levitus (1982).  相似文献   
677.
Primary data on the organic geochemistry of the Tetori Group provide basic information about depositional environments and thermal maturation of organic matter through two geological sections in the Hokuriku region, central Japan. The thermal maturity of organic matter was evaluated by the methylphenanthrene index‐1. The maturity progressively increases stratigraphically down through the Izumi section in Fukui Prefecture. The estimated vitrinite reflectance equivalent is <1.35% near the top of the section, gradually increasing to >2.0% near the base. The thermal maturation process can account for stratigraphic changes in abundance of PAHs through this section. However, the occasional occurrence of coronene in the middle of the Izumi section is attributed to possible paleo‐wildfires that supplied more coronene to the depositional site. The stratigraphic distribution of PAHs through the Tateyama section, Toyama Prefecture, also can be explained by the same scenario as envisaged for the Izumi section, but weathering and/or other secondary factors may have partly modified primary signals for this section. Polycyclic aromatic sulfur compounds were observed in nearly all samples from both sections, even in samples for which a freshwater paleoenvironment is surmised. Most plausibly, some reduced sulfur was re‐oxidized to elemental sulfur, which persisted in the sediments and may have contributed to the formation of aromatic sulfur compounds. Hence, polycyclic aromatic sulfur compounds do not provide an index to separate marine environments from the freshwater settings for the Tetori Group.  相似文献   
678.
679.
The Miocene Kofu Granitic Complex (KGC) occurs in the Izu CollisionZone where the Izu–Bonin–Mariana (IBM) arc has beencolliding with the Honshu arc since the middle Miocene. TheKGC includes rocks ranging in compositions from biotite-bearinggranite (the Shosenkyo and Mizugaki plutons), and hornblende–biotite-bearinggranodiorite, tonalite, quartz-diorite, and granite (the Shiodaira,Sanpo, Hirose and Sasago plutons), to hornblende-bearing tonaliteand trondhjemite (the Ashigawa–Tonogi pluton), indicatingthat it was constructed from multiple intrusions of magma withdifferent bulk chemistry. The Sr-isotopic compositions correctedto sensitive high-resolution ion microprobe (SHRIMP) zirconages (SrI) suggest that the primary magmas of each pluton wereformed by anatexis of mixed lower crustal sources involvingboth juvenile basalt of the IBM arc and Shimanto sedimentaryrocks of the Honshu arc. After the primary magmas had formed,the individual plutons evolved by crystal fractionation processeswithout significant crustal assimilation or additional mantlecontribution. SHRIMP zircon U–Pb ages in the KGC rangefrom 16·8 to 10·6 Ma and overlap the resumptionof magmatic activity in the IBM and Honshu arcs at c. 17 Maand the onset of IBM arc–Honshu arc collision at c. 15Ma. The age of the granite plutons is closely related to theepisodic activity of arc magmatism and distinct granitic magmabatches could be formed by lower crustal anatexis induced byintrusion of underplated mantle-derived arc magmas. Based onpressures determined with the Al-in-hornblende geobarometer,the KGC magmas intruded into the middle crust. Thus, the KGCcould represent an example of the middle-crust layer indicatedthroughout the IBM arc by 6·0–6·5 km/s seismicvelocities. This granitic middle-crust layer acted buoyantlyduring the IBM arc–Honshu arc collision, leading to accretionof buoyant IBM arc middle crust to the Honshu arc. KEY WORDS: arc–arc collision; crustal anatexis; granite; Izu–Bonin–Mariana (IBM) arc; Izu Collision Zone  相似文献   
680.
Abstract— Fischer‐Tropsch catalysis, by which CO and H2 are converted to CH4 on the surface of transition metals, has been considered to be one of the most important chemical reactions in many planetary processes, such as the formation of the solar and circumplanetary nebulae, the expansion of vapor clouds induced by cometary impacts, and the atmospheric re‐entry of vapor condensate due to asteroidal impacts. However, few quantitative experimental studies have been conducted for the catalytic reaction under conditions relevant to these planetary processes. In this study, we conduct Fischer‐Tropsch catalytic experiments at low pressures (1.3 times 10?4 bar ≤ P ≤ 5.3 times 10?1 bar) over a wide range of H2/CO ratios (0.25–1000) using pure iron, pure nickel, and iron‐nickel alloys. We analyze what gas species are produced and measure the CH4 formation rate. Our results indicate that the CH4 formation rate for iron catalysts strongly depends on both pressure and the H2/CO ratio, and that nickel is a more efficient catalyst at lower pressures and lower H2/CO ratios. This difference in catalytic properties between iron and nickel may come from the reaction steps concerning disproportionation of CO, hydrogenation of surface carbon, and the poisoning of the catalyst. These results suggest that nickel is important in the atmospheric re‐entry of impact condensate, while iron is efficient in circumplanetary subnebulae. Our results also indicate that previous numerical models of iron catalysis based on experimental data at 1 bar considerably overestimate CH4 formation efficiency at lower pressures, such as the solar nebula and the atmospheric re‐entry of impact condensate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号