首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25461篇
  免费   351篇
  国内免费   312篇
测绘学   716篇
大气科学   1797篇
地球物理   4897篇
地质学   8748篇
海洋学   2307篇
天文学   6296篇
综合类   53篇
自然地理   1310篇
  2021年   200篇
  2020年   237篇
  2019年   297篇
  2018年   606篇
  2017年   587篇
  2016年   726篇
  2015年   409篇
  2014年   698篇
  2013年   1301篇
  2012年   797篇
  2011年   1041篇
  2010年   956篇
  2009年   1254篇
  2008年   1138篇
  2007年   1151篇
  2006年   1125篇
  2005年   845篇
  2004年   843篇
  2003年   762篇
  2002年   721篇
  2001年   617篇
  2000年   638篇
  1999年   562篇
  1998年   556篇
  1997年   527篇
  1996年   396篇
  1995年   396篇
  1994年   410篇
  1993年   313篇
  1992年   309篇
  1991年   259篇
  1990年   311篇
  1989年   272篇
  1988年   254篇
  1987年   280篇
  1986年   237篇
  1985年   317篇
  1984年   339篇
  1983年   330篇
  1982年   313篇
  1981年   249篇
  1980年   268篇
  1979年   216篇
  1978年   206篇
  1977年   215篇
  1976年   180篇
  1975年   191篇
  1974年   178篇
  1973年   167篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
T. Le Bertre  B. Zellner 《Icarus》1980,43(2):172-180
Polarimetric, photometric, and reflectance spectroscopic properties of asteroid 44 Vesta are simulated in the laboratory by a preparation of eucrite Bereba consisting oof a broad mixture of particle sizes (mainly greater than 50-μm) mixed and partially coated with particles of size 10 μm and less. Coarse grains are necessary for producing the same albedo and a very fine dust coating is necessary for producing the same polarization inversion angle as observed for Vesta. There are less small grains and fine dust in this sample than in lunar soils. Photometrically, if coating a sphere, this sample shows a constant brightness on the sunward half of the observed hemisphere, the brightness being given on the other half by the Minnaert reciprocity principle. With such a photometric behavior, the global geometric albedo and the sub-Earth point geometric albedo differ by no more than 5%. The microscopic phase coefficient β is 0.021 magnitude per degree for the sample; the larger value, β = 0.025, observed telescopically for Vesta indicates that large-scale roughness is present on this asteroid.  相似文献   
972.
The Infrared Astronomical Satellite (IRAS) program will produce an extremely sensitive all-sky survey over the wavelength region 8 to 120 μm when the mission is flown in 1982. These data will provide a novel opportunity to detect planetary-sized objects having masses <0.08M or near our solar system. The improved detection limit of the IRAS will greatly increase the volume of space searched for such objects as compared with previous optical and infrared studies.  相似文献   
973.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   
974.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   
975.
The catalogue of protoplanetary nebulae by Vickers et al. has been supplemented with the line-of-sight velocities and proper motions of their central stars from the literature. Based on an exponential density distribution, we have estimated the vertical scale height from objects with an age less than 3 Gyr belonging to the Galactic thin disk (luminosities higher than 5000 L ) to be h = 146 ± 15 pc, while from a sample of older objects (luminosities lower than 5000 L ) it is h = 568 ± 42 pc. We have produced a list of 147 nebulae in which there are only the line-of-sight velocities for 55 nebulae, only the proper motions for 25 nebulae, and both line-of-sight velocities and proper motions for 67 nebulae. Based on this kinematic sample, we have estimated the Galactic rotation parameters and the residual velocity dispersions of protoplanetary nebulae as a function of their age. We have established that there is a good correlation between the kinematic properties of nebulae and their separation in luminosity proposed by Vickers. Most of the nebulae are shown to be involved in the Galactic rotation, with the circular rotation velocity at the solar distance being V 0 = 227 ± 23 km s?1. The following principal semiaxes of the residual velocity dispersion ellipsoid have been found: (σ1, σ2, σ3) = (47, 41, 29) km s?1 from a sample of young protoplanetary nebulae (with luminosities higher than 5000 L ), (σ1, σ2, σ3) = (50, 38, 28) km s?1 from a sample of older protoplanetary nebulae (with luminosities of 4000 L or 3500 L ), and (σ1, σ2, σ3) = (91, 49, 36) km s?1 from a sample of halo nebulae (with luminosities of 1700 L ).  相似文献   
976.
Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012?–?2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5?–?40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.  相似文献   
977.
On 28th September 2015, India launched its first astronomical space observatory AstroSat, successfully. AstroSat carried five astronomy payloads, namely, (i) Cadmium Zinc Telluride Imager (CZTI), (ii) Large Area X-ray Proportional Counter (LAXPC), (iii) Soft X-ray Telescope (SXT), (iv) Ultra Violet Imaging Telescope (UVIT) and (v) Scanning Sky Monitor (SSM) and therefore, has the capability to observe celestial objects in multi-wavelength. Four of the payloads are co-aligned along the positive roll axis of the spacecraft and the remaining one is placed along the positive yaw axis direction. All the payloads are sensitive to bright objects and specifically, require avoiding bright Sun within a safe zone of their bore axes in orbit. Further, there are other operational constraints both from spacecraft side and payloads side which are to be strictly enforced during operations. Even on-orbit spacecraft manoeuvres are constrained to about two of the axes in order to avoid bright Sun within this safe zone and a special constrained manoeuvre is exercised during manoeuvres. The planning and scheduling of the payloads during the Performance Verification (PV) phase was carried out in semi-autonomous/manual mode and a complete automation is exercised for normal phase/Guaranteed Time Observation (GuTO) operations. The process is found to be labour intensive and several operational software tools, encompassing spacecraft sub-systems, on-orbit, domain and environmental constraints, were built-in and interacted with the scheduling tool for appropriate decision-making and science scheduling. The procedural details of the complex scheduling of a multi-wavelength astronomy space observatory and their working in PV phase and in normal/GuTO phases are presented in this paper.  相似文献   
978.
In 2013–2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON ~ 11.1 e?, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters (FWHM = 250 Å) uniformly covering the 4000–9000 Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000–7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to RAB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.  相似文献   
979.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   
980.
In this paper, we compare the U‐Pb zircon age distribution pattern of sample 14311 from the Apollo 14 landing site with those from other breccias collected at the same landing site. Zircons in breccia 14311 show major age peaks at 4340 and 4240 Ma and small peaks at 4110, 4030, and 3960 Ma. The zircon age patterns of breccia 14311 and other Apollo 14 breccias are statistically different suggesting a separate provenance and transportation history for these breccias. This interpretation is supported by different U‐Pb Ca‐phosphate and exposure ages for breccia 14311 (Ca‐phosphate age: 3938 ± 4 Ma, exposure age: ~550–660 Ma) from the other Apollo 14 breccias (Ca‐phosphate age: 3927 ± 2 Ma, compatible with the Imbrium impact, exposure age: ~25–30 Ma). Based on these observations, we consider two hypotheses for the origin and transportation history of sample 14311. (1) Breccia 14311 was formed in the Procellarum KREEP terrane by a 3938 Ma‐old impact and deposited near the future site of the Imbrium basin. The breccia was integrated into the Fra Mauro Formation during the deposition of the Imbrium impact ejecta at 3927 Ma. The zircons were annealed by mare basalt flooding at 3400 Ma at Apollo 14 landing site. Eventually, at approximately 660 Ma, a small and local impact event excavated this sample and it has been at the surface of the Moon since this time. (2) Breccia 14311 was formed by a 3938 Ma‐old impact. The location of the sample is not known at that time but at 3400 Ma, it was located nearby or buried by hot basaltic flows. It was transported from where it was deposited to the Apollo 14 landing site by an impact at approximately 660 Ma, possibly related to the formation of the Copernicus crater and has remained at the surface of the Moon since this event. This latter hypothesis is the simplest scenario for the formation and transportation history of the 14311 breccia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号