全文获取类型
收费全文 | 145475篇 |
免费 | 2290篇 |
国内免费 | 1412篇 |
专业分类
测绘学 | 3871篇 |
大气科学 | 10630篇 |
地球物理 | 29656篇 |
地质学 | 51099篇 |
海洋学 | 12540篇 |
天文学 | 31614篇 |
综合类 | 389篇 |
自然地理 | 9378篇 |
出版年
2021年 | 1209篇 |
2020年 | 1433篇 |
2019年 | 1515篇 |
2018年 | 3206篇 |
2017年 | 3068篇 |
2016年 | 3934篇 |
2015年 | 2422篇 |
2014年 | 3849篇 |
2013年 | 7543篇 |
2012年 | 4094篇 |
2011年 | 5672篇 |
2010年 | 4953篇 |
2009年 | 6551篇 |
2008年 | 5980篇 |
2007年 | 5595篇 |
2006年 | 5504篇 |
2005年 | 4422篇 |
2004年 | 4441篇 |
2003年 | 4167篇 |
2002年 | 3941篇 |
2001年 | 3548篇 |
2000年 | 3465篇 |
1999年 | 2874篇 |
1998年 | 2943篇 |
1997年 | 2845篇 |
1996年 | 2417篇 |
1995年 | 2382篇 |
1994年 | 2193篇 |
1993年 | 1967篇 |
1992年 | 1916篇 |
1991年 | 1730篇 |
1990年 | 1967篇 |
1989年 | 1710篇 |
1988年 | 1569篇 |
1987年 | 1877篇 |
1986年 | 1623篇 |
1985年 | 2068篇 |
1984年 | 2262篇 |
1983年 | 2150篇 |
1982年 | 2042篇 |
1981年 | 1847篇 |
1980年 | 1729篇 |
1979年 | 1569篇 |
1978年 | 1611篇 |
1977年 | 1485篇 |
1976年 | 1394篇 |
1975年 | 1344篇 |
1974年 | 1332篇 |
1973年 | 1326篇 |
1972年 | 860篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
D. J. Bernie E. Guilyardi G. Madec J. M. Slingo S. J. Woolnough J. Cole 《Climate Dynamics》2008,31(7-8):909-925
Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden–Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20–100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean–atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models. 相似文献
982.
lvaro Gonzlez Miguel Vzquez-Prada Javier B. Gmez Amalio F. Pacheco 《Tectonophysics》2006,424(3-4):319
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data. 相似文献
983.
Panagiotis Dimakis Bjrn Inge Braathen Jan Inge Faleide Anders Elverhi Steinar T. Gudlaugsson 《Tectonophysics》1998,300(1-4)
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism. 相似文献
984.
Abstract Soil erosion probability maps were produced under various case scenarios by accounting for uncertainties in the data and in the decision rule, using the Universal Soil Loss Equation (USLE), remote sensing and geographical information systems (GIS). This objective was realized by applying the Bayesian Probability Theory within IDRISI, a raster based GIS. The outcomes were two continuous probability soil erosion maps ranging from zero to 1. Comparing these maps with an earlier study indicates that accounting for the uncertainties has, in general, decreased the probability of soil erosion. Based on average readings for specific sites on the maps, increases in erosion risk under the second case scenario have had the highest impact on the highlands that is in the central, eastern, and northern regions of Langkawi Island, Malaysia. Assuming a 10% risk, this impact has increased by 11.98, 11.83 and 5.741% for high, medium and low soil erosion risk areas on the island respectively. 相似文献
985.
The frequency of flooding is often presumed to increase with climate change because of projected increases in rainfall intensities. In this paper, using 50‐plus years of historical discharge and meteorological data from three watersheds in different physiographic regions of New York State, USA, we find that annual maximum stream discharges are associated with 20% or less of the annual maximum rainfall events. Instead of rainfall events, approximately 20% of annual maximum stream discharges are associated with annual maximum snowmelt events while 60% of annual maximum discharges are associated with moderate rainfall amounts and very wet soil conditions. To explore the potential for changes in future flood risk, we employed a compound frequency distribution that assumes annual maximum discharges can be modelled by combining the cumulative distribution functions of discharges resulting from annual maximum rainfall, annual maximum snowmelt, and occurrences of moderate rain on wet soils. Basing on a compound frequency distribution comprised of univariate general extreme value (GEV) and gamma distributions, we found that a hypothetical 20% increase in the magnitude of rainfall‐related stream discharge results in little change in 96th percentile annual maximum discharge. For the 99th percentile discharge, two waterbodies in our study had a 10% or less increase in annual maximum discharge when annual maximum rainfall‐related discharges increased 20% while the third waterbody had a 16% increase in annual maximum discharges. Additionally, in some cases, annual maximum discharges could be offset by a reduction in the discharge resulting from annual maximum snowmelt events. While only intended as a heuristic tool to explore the interaction among different flood‐causing mechanisms, use of a compound flood frequency distribution suggests a case can be made that not all waterbodies in humid, cold regions will see extensive changes in flooding due to increased rainfall intensities. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
986.
In 1967, the original Walker Branch Watershed (WBW) project was established to study elemental cycling and mass balances in a relatively unimpacted watershed. Over the next 50+ years, findings from additional experimental studies and long-term observations on WBW advanced understanding of catchment hydrology, biogeochemistry, and ecology and established WBW as a seminal site for catchment science. The 97.5-ha WBW is located in East Tennessee, USA, on the U.S. Department of Energy's Oak Ridge Reservation. Vegetation on the watershed is characteristic of an eastern deciduous, second-growth forest. The watershed is divided into two subcatchments: the West Fork (38.4 ha) and the East Fork (59.1 ha). Headwater streams draining these subcatchments are fed by multiple springs, and thus flow is perennial. Stream water is high in base cations due to weathering of dolomite bedrock and nutrient concentrations are low. Long-term observations of climate, hydrology, and biogeochemistry include daily (1969–2014) and 15-min (1994–2014) stream discharge and annual runoff (1969–2014); hourly, daily, and annual rainfall (1969–2012); daily climate and soil temperature (1993–2010); and weekly stream water chemistry (1989–2013). These long-term datasets are publicly available on the WBW website (https://walkerbranch.ornl.gov/long-term-data/ ). While collection of these data has ceased, related long-term measurements continue through the National Ecological Observatory Network (NEON), where WBW is the core terrestrial and aquatic site in the Appalachian and Cumberland Plateau region (NEON's Domain 7) of the United States. These long-term datasets have been and will continue to be important in evaluating the influence of climatic and environmental drivers on catchment processes. 相似文献
987.
Standard methods to identify microbial contaminants in the environment are slow, laborious, and can require specialized expertise. This study investigated electrochemical detection of microbial contaminants using commercially available, hand-held instruments. Electrochemical assays were developed for a red tide dinoflagellate (Karenia brevis), fecal-indicating bacteria (Enterococcus spp.), markers indicative of human sources of fecal pollution (human cluster Bacteroides and the esp gene of Enterococcus faecium), bacterial pathogens (Escherichia coli 0157:H7, Salmonella spp., Campylobacter jejuni, Staphylococcus aureus), and a viral pathogen (adenovirus). For K. brevis, two assay formats (Rapid PCR-Detect and Hybrid PCR-Detect) were tested and both provided detection limits of 10 genome equivalents for DNA isolated from K. brevis culture and amplified by PCR. Sensitivity with coastal water samples was sufficient to detect K. brevis that was "present" (相似文献
988.
The distribution of electric charge on the marine aerosol was determined near the sea surface of the Indian Ocean and the North Atlantic during the final stage of the Snellius II-expedition. Mean values for small ion concentrationsn
+=455 cm–3 andn
–=340 cm–3 were found over the Atlantic, whilen
+=310 andn
–=250 cm–3 were the mean values over the Indian Ocean. The ration
+/n– increased from 1.2 to 2.0 with decreasing wind velocity. At wind velocities below 5 m/s 75% of the net space charge near the ocean surface was found to be carried by small ions. 相似文献
989.
G.?P.?KushnarenkoEmail author O.?E.?Yakovleva G.?M.?Kuznetsova 《Geomagnetism and Aeronomy》2018,58(2):201-206
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003–2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° Е) is examined. Variations of Ne at heights of 150–190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal–autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003–2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150?190 km. 相似文献
990.
There is an ongoing debate about the tectonic evolution of southeast Australia, particularly about the causes and nature of its accretion to a much older Precambrian core to the west. Seismic imaging of the crust can provide useful clues to address this issue. Seismic tomography imaging is a powerful tool often employed to map elastic properties of the Earth's lithosphere, but in most cases does not constrain well the depth of discontinuities such as the Mohorovi?i? (Moho). In this study, an alternative imaging technique known as receiver function (RF) has been employed for seismic stations near Canberra in the Lachlan Orogen to investigate: (i) the shear-wave-velocity profile in the crust and uppermost mantle, (ii) variations in the Moho depth beneath the Lachlan Orogen, and (iii) the nature of the transition between the crust and mantle. A number of styles of RF analyses were conducted: H-K stacking to obtain the best compressional–shear velocity (V P /V S) ratio and crustal thickness; nonlinear inversion for the shear-wave-velocity structure and inversion of the observed variations in RFs with back-azimuth to investigate potential dipping of the crustal layers and anisotropy. The thick crust (up to 48 km) and the mostly intermediate nature of the crust?mantle transition in the Lachlan Orogen could be due to the presence of underplating at the base of the crust, and possibly to the existing thick piles of Ordovician mafic rocks present in the mid and lower crust. Results from numerical modelling of RFs at three seismic stations (CAN, CNB and YNG) suggest that the observed variations with back-azimuth could be related to a complex structure beneath these stations with the likelihood of both a dipping Moho and crustal anisotropy. Our analysis reveals crustal thickening to the west beneath CAN station which could be due to slab convergence. The crustal thickening may also be related to the broad Macquarie volcanic arc, which is rooted to the Moho. The crustal anisotropy may arise from a strong N–S structural trend in the eastern Lachlan Orogen and to the preferred crystallographic orientation of seismically anisotropic minerals in the lower and middle crust related to the paleo-Pacific plate convergence. 相似文献