首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271299篇
  免费   7323篇
  国内免费   7389篇
测绘学   8134篇
大气科学   21810篇
地球物理   57260篇
地质学   96764篇
海洋学   23237篇
天文学   56506篇
综合类   2586篇
自然地理   19714篇
  2022年   2110篇
  2021年   3285篇
  2020年   3446篇
  2019年   3769篇
  2018年   4345篇
  2017年   3915篇
  2016年   6530篇
  2015年   5020篇
  2014年   7908篇
  2013年   15145篇
  2012年   7315篇
  2011年   8596篇
  2010年   7662篇
  2009年   10181篇
  2008年   8950篇
  2007年   8250篇
  2006年   10127篇
  2005年   8136篇
  2004年   7933篇
  2003年   7367篇
  2002年   7001篇
  2001年   6347篇
  2000年   6316篇
  1999年   5795篇
  1998年   5718篇
  1997年   5461篇
  1996年   5121篇
  1995年   4767篇
  1994年   4440篇
  1993年   4138篇
  1992年   3885篇
  1991年   3763篇
  1990年   3901篇
  1989年   3640篇
  1988年   3390篇
  1987年   3908篇
  1986年   3449篇
  1985年   4263篇
  1984年   4762篇
  1983年   4427篇
  1982年   4338篇
  1981年   3919篇
  1980年   3650篇
  1979年   3520篇
  1978年   3484篇
  1977年   3281篇
  1976年   3040篇
  1975年   2960篇
  1974年   2915篇
  1973年   3072篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Abstract— Amoeboid olivine aggregates (AOAs) are irregularly shaped, fine‐grained aggregates of olivine and Ca, Al‐rich minerals and are important primitive components of CR chondrites. The AOAs in CR chondrites contain FeNi metal, and some AOAs contain Mn‐rich forsterite with up to 0.7 MnO and Mn:Fe ratios greater than one. Additionally, AOAs in the CR chondrites do not contain secondary phases (nepheline and fayalitic olivine) that are found in AOAs in some CV chondrites. The AOAs in CR chondrites record a complex petrogenetic history that included nebular gas‐solid condensation, reaction of minerals with the nebular gas, small degrees of melting, and sintering of the assemblage. A condensation origin for the Mn‐rich forsterite is proposed. The Mn‐rich forsterite found in IDPs, unequilibrated ordinary chondrite matrix, and AOAs in CR chondrites may have had a similar origin. A type A calcium, aluminum‐rich inclusion (CAI) with an AOA attached to its Wark‐Lovering rim is also described. This discovery reveals a temporal relationship between AOAs and type A inclusions. Additionally, a thin layer of forsterite is present as part of the Wark‐Lovering rim, revealing the crystallization of olivine at the end stages of Wark‐Lovering rim formation. The Ca, Al‐rich nodules in the AOAs may be petrogenetically related to the Ca, Al‐rich minerals in Wark‐Lovering rims on type A CAIs. AOAs are chondrite components that condensed during the final stage of Wark‐Lovering rim formation but, in general, were temporally, spatially, or kinetically isolated from reacting with the nebula vapor during condensation of the lower temperature minerals that were commonly present as chondrule precursors.  相似文献   
192.
Recently, exact spatially-homogeneous solutions have been found for a conformally invariant massless scalar fieldS(t) coupled to a Robertson-Walker geometry. We investigate extending these solutions to inhomogeneous scalar fieldsS(t, x l ). For an isotropic scalar fieldS(t, r) we find a solution satisfying three of the five field equations. If we use REDUCE, we show that the remaining equations forceS=S(t).  相似文献   
193.
194.
New aeromagnetic data, K-Ar age determinations of dredged marine igneous rocks, as well as other geophysical evidence have shed light on the chronology, nature and evolution of the northern Iceland Plateau. Correspondence between seismic refraction profiles taken on the Jan Mayen Ridge and westward through Jan Mayen Island, suppressed aeromagnetic anomalies, earthquake surface wave studies, and ages of dredged igneous rocks suggest these strata may form an extended region of thickened crust, possibly of Caledonian age, extending westward toward the Kolbeinsey Ridge and northwest to the south wall of the Jan Mayen Fracture Zone.  相似文献   
195.
196.
197.
 The uranium deposits in the basin of Franceville (Gabon) host the only natural fission reactors known in the world. Unique geological conditions favoured a natural fission reaction 2 Ga ago. This was detected by anomalous isotopic compositions of uranium and rare earth elements (REE), which are produced by the fission reaction. In total, 16 reactor zones were found. Most of them are mined out. The reactor zone of Bangombé, is only 10–11 m below the surface. This site has been influenced by surface weathering processes. Six drill cores have been sampled at the site of the reactor zone of Bangombé during the course of the study and only one drill core (BAX 08) hit the core of the reactor. From these data and previous drilling campaigns, the reactor size is estimated to be 10 cm thick, 2–3 m wide and 4–6 m long. The migration of fission products can be traced by the anomalous isotope ratios of REE because of the fission process. The 149Sm/147Sm ratio close to the reactor zone is only 0.28 (normal: 0.92) because of the intense neutron capture of 149Sm and subsequent transmutation, whereas 147Sm is enriched by the fission reaction. Similar changes in isotopic patterns are detectable on other REE. The isotope ratios of Sm and Nd of whole rock and fracture samples surrounding the reactor indicate that fission-genic REE migrated only a few decimetres above and mainly below the reactor zone. Organic matter (bitumen) seems to act as a trap for fission-genic REE. Additional REE-patterns show less intense weathering with increasing depth in the log profile and support a simple weathering model. Received: 26 November 1999 · Accepted: 2 May 2000  相似文献   
198.
Structural crust is a thin layer formed on the soil surface after a rainstorm. The crust is the result of a physical segregation and rearrangement of soil particles in a way that affects some of the soil properties, such as infiltration, runoff and soil erosion. In practice, there is no rapid, in situ method for monitoring, assessing and mapping crust intensity and quality. In this study, a controlled spectral investigation of the structural crust across the NIR–SWIR spectral region was conducted on three selected Israeli soils, to study the potential of reflectance radiation to detect structural crust in soils. Two major factors served as the driving forces for this study: (1) there is no valid method for in situ assessment of the crust's characteristics in the agriculture field, and (2) the crust might bias thematic remote sensing of soils, because the thin layer of crust blocks photon–matter interaction, which represents the relevant soil body. Through the use of a laboratory rainfall simulator and a sensitive spectrometer, it was revealed that for three selected soils, significant spectral differences occurred between the crust and its bulk soil. The spectral information was found to be related to changes in particle size distribution and texture at the surface of the soil. This conclusion was based on indications of absorption of OH in clay lattice, OH in adsorbed water and CO3 in carbonates. It was concluded that the structural crust is a phenomenon that should not be ignored by remote-sensing users. In fact, in the field of agriculture, the spectral properties of crust can be used as tools for estimating the crust's intensity.  相似文献   
199.
Summary We present compositions of reheated melt inclusions in clinopyroxene phenocrysts from three mafic xenoliths in Breccia Museo, Campi Flegrei, Italy. Melt inclusion compositions are remarkably different from the compositions of known contemporary Campi Flegrei lavas, being significantly enriched in K2O and depleted in Na2O. Some differences are also evident in FeO* (total Fe as FeO) and TiO2 contents. The clinopyroxene phenocrysts could not have crystallised from Campi Flegrei magmas. We suggest that they originated from a volcanic system genetically very similar to, and possibly linked with, the >14 ka volcanic system of Mt. Somma, another Campanian volcano ∼ 30 km east from Campi Flegrei, from which Vesuvius subsequently developed. This result indicates a close relationship (or link) between the two volcanic systems which have until now been considered separate. We speculate that the link was established prior to eruption of the Neapolitan Yellow Tuff (NYT) (∼ 12 ka). The xenoliths were derived from a volcanic system older than the host breccias themselves. We suggest that this older volcanism had close similarities with the volcanism of the older products of Mt. Somma (∼25 ka). Received March 20, 2000; accepted November 2, 2000  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号