首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26039篇
  免费   361篇
  国内免费   318篇
测绘学   734篇
大气科学   1833篇
地球物理   5005篇
地质学   8949篇
海洋学   2317篇
天文学   6471篇
综合类   55篇
自然地理   1354篇
  2021年   205篇
  2020年   246篇
  2019年   307篇
  2018年   619篇
  2017年   605篇
  2016年   734篇
  2015年   415篇
  2014年   716篇
  2013年   1323篇
  2012年   816篇
  2011年   1070篇
  2010年   975篇
  2009年   1285篇
  2008年   1147篇
  2007年   1175篇
  2006年   1140篇
  2005年   857篇
  2004年   853篇
  2003年   777篇
  2002年   739篇
  2001年   628篇
  2000年   643篇
  1999年   573篇
  1998年   564篇
  1997年   536篇
  1996年   407篇
  1995年   409篇
  1994年   416篇
  1993年   321篇
  1992年   320篇
  1991年   262篇
  1990年   321篇
  1989年   282篇
  1988年   262篇
  1987年   288篇
  1986年   246篇
  1985年   333篇
  1984年   344篇
  1983年   334篇
  1982年   327篇
  1981年   261篇
  1980年   271篇
  1979年   223篇
  1978年   212篇
  1977年   224篇
  1976年   193篇
  1975年   198篇
  1974年   186篇
  1973年   168篇
  1972年   116篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
771.
Paleomagnetic data from 46 sites (674 specimens) of the Westcoast Crystalline Gneiss Complex on the west coast of Vancouver Island using AF and thermal demagnetization methods yields a high blocking temperature WCB component (> 560°C) with a pole at 335°W, 66°N (δp = 4°, δm = 6°) and a lower coercivity WCA component ( 25 mT, < 500°C) with a pole at 52°W, 79°N (δp = 7°, δm = 8°). Further thermal demagnetization data from 24 sites in the Jurassic Island Intrusions also defines two high blocking temperature components. The IIA component pole is at 59°W, 79°N (δp = 7°, δm = 8°) and IIB pole at 130°W, 73°N (δp = 12°, δm = 13°). Combined with previous data from the Karmutsen Basalts and mid-Tertiary units on Vancouver Island and from the adjacent Coast Plutonic Complex, the geotectonic motions are examined for the Vancouver Island segment of the Wrangellian Subterrane of composite Terrane II of the Cordillera. The simplest hypothesis invokes relatively uniform translation for Terrane II from Upper Triassic to Eocene time producing 39° ± 6° of northward motion relative to the North American craton, combined with 40° of clockwise rotation during the Lower Tertiary.  相似文献   
772.
773.
774.
775.
A column sampler for use in shallow (1 m) pools is described. The apparatus is a 10-cm diameter PVC pipe mounted on a base plate. A sliding trap on the base plate is attached to a cable which runs over a pulley to the upper part of the sampler. A whole water column of 78 cm2 is sampled and 1–2 cm of substrate can be included as desired. The sampler has been used successfully in salt marsh pools to census gastropods, amphipods, and copepods.  相似文献   
776.
777.
778.
779.
780.
Hydrothermal experiments in the temperature range 750–1020°C have defined the saturation behavior of zircon in crustal anatectic melts as a function of both temperature and composition. The results provide a model of zircon solubility given by: In DZrzircon/melt= ?3.80?[0.85(M?1)]+12900/T where DZrzircon/melt is the concentration ratio of Zr in the stoichiometric zircon to that in the melt, T is the absolute temperature, and M is the cation ratio (Na + K + 2Ca)/(Al · Si). This solubility model is based principally upon experiments at 860°, 930°, and 1020°C, but has also been confirmed at temperatures up to 1500°C for M = 1.3. The lowest temperature experiments (750° and 800°C) yielded relatively imprecise, low solubilities, but the measured values (with assigned errors) are nevertheless in agreement with the predictions of the model.For M = 1.3 (a normal peraluminous granite), these results predict zircon solubilities ranging from ~ 100 ppm dissolved Zr at 750°C to 1330 ppm at 1020°C. Thus, in view of the substantial range of bulk Zr concentrations observed in crustal granitoids (~ 50–350 ppm), it is clear that anatectic magmas can show contrasting behavior toward zircon in the source rock. Those melts containing insufficient Zr for saturation in zircon during melting can have achieved that condition only by consuming all zircon in the source. On the other hand, melts with higher Zr contents (appropriate to saturation in zircon) must be regarded as incapable of dissolving additional zircon, whether it be located in the residual rocks or as crystals entrained in the departing melt fraction. This latter possibility is particularly interesting, inasmuch as the inability of a melt to consume zircon means that critical geochemical “indicators” contained in the undissolved zircon (e.g. heavy rare earths, Hf, U, Th, and radiogenic Pb) can equilibrate with the contacting melt only by solid-state diffusion, which may be slow relative to the time scale of the melting event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号