The objective of this research was to quantify the impact of pollution along the coastlines of the Irish Sea. Pollution assessment was based on the combined measurement of scope for growth (SFG), and chemical contaminants in the tissues of mussels (Mytilus edulis) collected from 38 coastal sites around the Irish Sea during June-July in 1996 and 1997. On the UK mainland coast, the SFG showed a general trend with a significant decline in water quality in the Liverpool and Morecambe Bay region. High water quality was recorded along the west coast of Wales, as well as southwest England and northwest Scotland (clean reference sites outside the Irish Sea). Along the coast of Ireland there was a similar trend with reduced SFG within the Irish Sea region. SFG was generally low north of Duncannon and then improved north of Belfast. The poor water quality on both sides of the Irish Sea is consistent with the prevailing hydrodynamics and the spatial distribution of contaminants associated with urban/ industrial development. The decline in SFG of mussels on both sides of the Irish Sea was associated with a general increase in contaminant levels in the mussels. Certain contaminants, including PAHs, TBT, sigmaDDT, Dieldrin, gamma-HCH, PCBs, and a few of the metals (Cd, Se, Ag, Pb), showed elevated concentrations. Many of these contaminants were particularly elevated in the coastal margins of Liverpool Bay, Morecambe Bay and Dublin Bay. A quantitative toxicological interpretation (QTI) of the combined tissue residue chemistry and SFG measurements indicated that at the majority of coastal sites, c. 50 to > 80% of the observed decline in SFG was due to PAHs as a result of fossil fuel combustion and oil spills. TBT levels were highest at major ports and harbours, but these concentrations only made a minor contribution to the overall reduction in SFG. At no sites were individual metals accumulated to concentrations that could cause a significant effect on SFG. The study identified many sites where the observed reduction in SFG was far greater than predicted from the limited number of chemical contaminants analysed, thus indicating the presence of additional 'unknown toxicants'. Sewage (containing domestic, agricultural and industrial components) appears to be an important contributor to reduced SFG and linear alkylbenzenes (LABs) and As may provide suitable 'sewage markers'. There was a highly significant positive correlation between SFG and As (P < 0.001). This relationship may be due to reduced As uptake by algal food material and mussels at sites with elevated P04 concentrations (e.g. at sites with sewage inputs). Phosphate is a known competitive inhibitor of As accumulation, at least in algae. The results highlight that further research is required on 'sewage markers' in mussels. The SFG approach therefore provides a rapid, cost-effective and quantitative measure of pollution impact, as well as a means of identifying the causes through a QTI of tissue contaminants levels. It also serves to identify the presence of unidentified toxicants and areas that require further study. 相似文献
During a recent oceanographical-geophysical survey carried out in the southeastern part of the Gulf of Patras in Western Greece for the construction of an outfall, an active pockmark field was found. The pockmark field was formed in soft layered Holocene silts. The pockmarks are associated with acoustic anomalies attributed to gas-charged sediments. The pockmarks vary in size and shape from 25 to 250 m in diameter and from 0.5 to 15 m in depth and are among the largest and deepest observed in the world.
On July 14th, 1993, during the survey, a major earthquake of magnitude 5.4 on the Richter scale occurred in the area. During the 24 hour period prior to the earthquake the bottom water temperature anomalously increased on three occasions, whilst for a few days after the earthquake it was noted that the majority of the pockmarks were venting gas bublles.
It is considered that the three abrupt sea-water temperature increases were probably the result of upward migrating high-temperature gas bubbles in the water column. It is further suggested that the earthquake was the triggering mechanism and that the gas expulsion was caused by the reduction in the pore volume in the sediments resulting from changes in the stress regime prior to the earthquake. Therefore, it can be suggested that in seismic areas adjacent to pockmark fields, earthquake prediction may be achieved by monitoring the water temperature and/or the rate of gas venting in the pockmark field.
Our analysis indicates that the pockmark field in the Patras Gulf has formed slowly during the Holocene by continuous gas venting, which is periodically being interrupted by short-duration events of enhanced gas seepage triggered by earthquakes. 相似文献
Three-dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington rotations (CR 2054?–?2153) during 2007/03?–?2014/08 using the spherically symmetric method from polarized white-light observations with the inner coronagraph (COR1) onboard the twin Solar Terrestrial Relations Observatory (STEREO). These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a magnetohydrodynamics (MHD) model as well as using data from the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO)-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7?–?9 months. Using 14 CR (\(\approx13\)-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6?–?4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry: they are somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7?–?8 months. In addition, it is found that the radial distribution of the mean electron density for streamers at Cycle 24 maximum is only slightly larger (by \(\approx30\%\)) than at cycle minimum. 相似文献
A method is proposed that uses analysis of borehole stratigraphic logs for the characterization of shallow aquifers and for the assessment of areas suitable for manual drilling. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite and hydraulic transmissivity of the shallow aquifer. The model is applied to a study area in northwestern Senegal. A dataset of boreholes logs has been processed using a software package (TANGAFRIC) developed during the research. After a manual procedure to assign a standard category describing the lithological characteristics, the next step is the automated extraction of different textural parameters and the estimation of hydraulic conductivity using reference values available in the literature. The hydraulic conductivity values estimated from stratigraphic data have been partially validated, by comparing them with measured values from a series of pumping tests carried out in large-diameter wells. The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region. The research contributes to improving the identification of areas where conditions are suitable for manual drilling. This is achieved by applying the described method, based on a structured and semi-quantitative approach, to classify the zones of suitability for given manual drilling techniques using data available in most African countries. Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population. 相似文献
Indus is one of the major sources of sediments to the Gulf of Kachchh. Yet only its <63 micron fraction is studied in detail
with regards to the offshore current dynamics. Hence here we present our study on characteristic signature of the Indus sediment
load (i.e. mica minerals) in >63 micron size fraction along the coast of Gulf of Kachchh. The spatial distribution of mica
minerals along the Gulf of Kachchh coast was studied which showed in general decreasing trend as we move along the northern
and southern coast of the Gulf of Kachchh but, an increase in amount near the southern mouth at Okha. The study shows that
the earlier proposed tidal barrier is ineffective in restricting movement of mica across the mouth of the gulf due to its
characteristic transport mechanism. Also the presence of mudflats along the gulf of Kachchh coast plays a vital role as sediment
receptors in the active sediment transport processes and mica minerals prove to be a promising simple tracer in studying the
Indus born sediments in the region. 相似文献
The rapid proliferation of Phragmites australis in North America has challenged resource managers to curb its expansion and reduce the loss of functional tidal marsh. We
investigated whether native plant competition could reduce the ability of Phragmites to invade a tidal marsh, and if plant diversity (species richness, evenness, and composition) altered the competitive outcome.
Immature Phragmites shoots and four native halophytes were transplanted to small but dense field plots (~1,200 shoots m−2) comprising three community structure types (Phragmites alone, Phragmites + 1 native species, and Phragmites + 4 native species). Interspecific competition significantly reduced Phragmites aboveground biomass, shoot length production, density, and survival by approximately 60%. Additionally, plots planted with
greater native diversity contained Phragmites with the lowest growth and survival, potentially indicating diversity-enhanced resource competition. Competition consistently
reduced the growth of Phragmites even under favorable conditions: lack of strong tidal flooding stresses as well as elevated nutrient pools. 相似文献
Rapid population growth, industrialization, and agricultural expansion in the Khoy area (northwestern Iran) have led to its dependence on groundwater and degradation of groundwater quality. This study attempts to decipher the major processes and factors that degrade the groundwater quality of the Khoy plain. For this purpose, 54 groundwater samples from unconfined and confined aquifers of the plain were collected in July 2017 and analyzed for major cations and anions (Na, K, Ca, Mg, HCO3, SO4, and Cl), minor ions (NO3 and F), and Al. Magnesium and bicarbonate were identified as the dominant cation and anion, respectively. Several ionic ratios and geochemical modeling using PHREEQC indicated that the most important hydrogeochemical processes to affect groundwater quality in the plain were weathering and dissolution of evaporitic and silicate minerals, mixing, and ion exchange. There were smaller effects from evaporation and anthropogenic factors (e.g., industries). Results showed that the high salinity of the groundwater in the northeast area of the plain was due to the high solubility of the evaporitic minerals, e.g., halite and gypsum. Reverse ion exchange and the contribution of mineral dissolution were more significant than ion exchange in the northeastern part of the plain. Elevated salinity of the groundwater in the southeast was attributed mostly to reverse ion exchange and somewhat to evaporation. 相似文献
The dependences of the velocity ellipsoids of F-G stars of the thin disk of the Galaxy on their ages and metallicities are
analyzed based on the new version of the Geneva-Copenhagen Catalog. The age dependences of the major, middle, and minor axes
of the ellipsoids, and also of the dispersion of the total residual velocity, obey power laws with indices 0.25, 0.29, 0.32,
and 0.27 (with uncertainties ±0.02). Due to the presence of thick-disk objects, the analogous indices for all nearby stars
are about a factor of 1.5 larger. Attempts to explain such values are usually based on modeling relaxation processes in the
Galactic disk. Elimination of stars in the most numerous moving groups from the sample slightly reduces the corresponding
indices (0.22, 0.26, 0.27, and 0.24). Limiting the sample to stars within 60 pc of the Sun, so that the sample can be considered
to be complete, leaves both the velocity ellipsoids and their age dependences virtually unchanged. With increasing age, the
velocity ellipsoid increases in size and becomes appreciablymore spherical, turns toward the direction of the Galactic center,
and loses angular momentum. The shape of the velocity ellipsoid remains far from equilibrium. With increasing metallicity,
the velocity ellipsoid for stars of mixed age increases in size, displays a weak tendency to become more spherical, and turns
toward the direction of the Galactic center (with these changes occurring substantially more rapidly in the transition through
the metallicity [Fe/H]≈−0.25). Thus, the ellipsoid changes similarly to the way it does with age; however, with decreasing
metallicity, the rotational velocity about the Galactic center monotonically increases, rather than decreases (!). Moreover,
the power-law indices for the age dependences of the axes depend on the metallicity, and display a maximum near [Fe/H] ≈−0.1.
The age dependences of all the velocity-ellipsoid parameters for stars with equal metallicity are roughly the same. It is
proposed that the appearance of a metallicity dependence of the velocity ellipsoids for thin-disk stars, recorded from the
close to the Sun, is most likely due to the radial migration of stars. 相似文献
We present the seasonal and geographical variations of the martian water vapor monitored from the Planetary Fourier Spectrometer Long Wavelength Channel aboard the Mars Express spacecraft. Our dataset covers one martian year (end of Mars Year 26, Mars Year 27), but the seasonal coverage is far from complete. The seasonal and latitudinal behavior of the water vapor is globally consistent with previous datasets, Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES), and with simultaneous results obtained from other Mars Express instruments, OMEGA and SPICAM. However, our absolute water columns are lower and higher by a factor of 1.5 than the values obtained by TES and SPICAM, respectively. In particular, we retrieve a Northern midsummer maximum of 60 pr-μm, lower than the 100-pr-μm observed by TES. The geographical distribution of water exhibits two local maxima at low latitudes, located over Tharsis and Arabia. Global Climate Model (GCM) simulations suggest that these local enhancements are controlled by atmospheric dynamics. During Northern spring, we observe a bulge of water vapor over the seasonal polar cap edge, consistent with the northward transport of water from the retreating seasonal cap to the permanent polar cap. In terms of vertical distribution, we find that the water volume mixing ratio over the large volcanos remains constant with the surface altitude within a factor of two. However, on the whole dataset we find that the water column, normalized to a fixed pressure, is anti-correlated with the surface pressure, indicating a vertical distribution intermediate between control by atmospheric saturation and confinement to a surface layer. This anti-correlation is not reproduced by GCM simulations of the water cycle, which do not include exchange between atmospheric and subsurface water. This situation suggests a possible role for regolith-atmosphere exchange in the martian water cycle. 相似文献
2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling
and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives
of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity
of the seismograms to changes in the model parameters. This paper applies two methods, called ‘the perturbation method’ and
‘the matrix method’, to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods
yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available
for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green’s function vectors and their
gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The
two Green’s function vectors are the responses of the displacement vector to the two directed unit vectors located at the
source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green’s
function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives
of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on
the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic
(TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen
parameters) plus one angle defining the symmetry axis. 相似文献