首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68915篇
  免费   692篇
  国内免费   1334篇
测绘学   2341篇
大气科学   4734篇
地球物理   13119篇
地质学   27726篇
海洋学   5238篇
天文学   12324篇
综合类   2235篇
自然地理   3224篇
  2022年   330篇
  2021年   593篇
  2020年   580篇
  2019年   702篇
  2018年   6008篇
  2017年   5219篇
  2016年   4000篇
  2015年   966篇
  2014年   1442篇
  2013年   2453篇
  2012年   2533篇
  2011年   4565篇
  2010年   3798篇
  2009年   4514篇
  2008年   3839篇
  2007年   4448篇
  2006年   2054篇
  2005年   1501篇
  2004年   1683篇
  2003年   1617篇
  2002年   1450篇
  2001年   1113篇
  2000年   1048篇
  1999年   855篇
  1998年   859篇
  1997年   807篇
  1996年   621篇
  1995年   631篇
  1994年   613篇
  1993年   476篇
  1992年   499篇
  1991年   418篇
  1990年   491篇
  1989年   438篇
  1988年   396篇
  1987年   445篇
  1986年   378篇
  1985年   503篇
  1984年   519篇
  1983年   518篇
  1982年   484篇
  1981年   432篇
  1980年   431篇
  1979年   386篇
  1978年   351篇
  1977年   344篇
  1976年   308篇
  1975年   311篇
  1974年   293篇
  1973年   323篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
To study the crystal chemistry of bernalite, Fe(OH)3, and the nature of the octahedral Fe3+ environment, Mössbauer spectra were recorded from 80 to 350 K, optical spectra were recorded at room temperature and a sample was studied using transmission electron microscopy. The Mössbauer spectrum of bernalite consists of a single six-line magnetic spectrum at 80 K. A broadened six-line magnetic spectrum with significantly less intensity is observed at higher temperatures, and is attributed to a small fraction of bernalite occurring as small particles. The variation of hyperfine magnetic field data for bulk bernalite with temperature is well described by the Weiss molecular field model with parameters of H 0 = 55.7±0.3 T and T N = 427±5K. The centre shift data were fitted to the Debye model with parameters 0=0.482±0.005 mm/s (relative to -Fe) and M=492±30 K. The quadrupole shift is near zero at 300 K, and does not vary significantly with temperature. Absorption spectra in the visible and near infrared range show three crystal field bands of Fe3+ at 11 300, 16000 and 23 200 cm-1, giving a crystal field splitting of 14 570 cm-1 and Racah parameters of B=629 cm-1 and C=3381 cm-1. Infrared reflection spectra show two distinct OH-stretching frequencies, which could correspond to two structurally different types of OH groups. A band was also observed at 2250 cm-1, suggesting the presence of molecular CO2 in the large cation site. Analytical transmission electron microscopy indicates that Si occurs within the bernalite structure as well as along domain boundaries. Electron diffraction and imaging show that bernalite is polysynthetically twinned along {100} planes with twin domains ranging from 3 to 20 nm in thickness. Results are discussed with respect to the nature of the octahedral Fe3+ site, and compared with values for other iron oxides and hydroxides.  相似文献   
102.
The population and distribution of carbon-oxidizing and sulfate-reducing bacteria in the soils of the Mozhaisk Reservoir are studied.  相似文献   
103.
Copper is a moderately incompatible chalcophile element. Its behavior is strongly controlled by sulfides. The speciation of sulfur is controlled by oxygen fugacity. Therefore, porphyry Cu deposits are usually oxidized (with oxygen fugacities > ΔFMQ +2) (Mungall 2002; Sun et al. 2015). The problem is that while most of the magmas at convergent margins are highly oxidized, porphyry Cu deposits are very rare, suggesting that high oxygen fugacity alone is not sufficient. Partial melting of mantle peridotite even at very high oxygen fugacities forms arc magmas with initial Cu contents too low to form porphyry Cu deposits directly (Lee et al. 2012; Wilkinson 2013). Here we show that partial melting of subducted young oceanic slabs at high oxygen fugacity (>ΔFMQ +2) may form magmas with initial Cu contents up to >500 ppm, favorable for porphyry mineralization. Pre-enrichment of Cu through sulfide saturation and accumulation is not necessarily beneficial to porphyry Cu mineralization. In contrast, re-melting of porphyritic hydrothermal sulfide associated with iron oxides may have major contributions to porphyry deposits. Thick overriding continental crust reduces the “leakage” of hydrothermal fluids, thereby promoting porphyry mineralization. Nevertheless, it is also more difficult for ore forming fluids to penetrate the thick continental crust to reach the depths of 2–4 km where porphyry deposits form.  相似文献   
104.
The distribution of sites where globular clusters have crossed the Galactic disk during the last 100 million years has been analyzed using the most recent kinematic data for 133 globular clusters (GCs). ThreeGCs (NGC 6341, NGC 7078, and ω Cen) whose distances between the positions where they crossed the Galactic disk and trajectories of the Gould Belt are less than 20% of their heliocentric distances at the crossing time (82, 98, and 96 million years ago, respectively) have been identified. For each of the clusters, this was their next to last, rather than their last, crossing of the Galactic disk. The passage of any one of these three GCs through the disk could potentially have initiated the formation of the Gould Belt.  相似文献   
105.
Volcanogenic massive sulfide deposits in ophiolite complexes are usually attributed to the Cyprus type. They associate with basaltic volcanics that are formed in mid-ocean or back-arc spreading centers and much less frequently in intra-plate settings. The deposits are characterized by copper or copper-zinc ores that are enriched in Ni, Co, and in places Mn and As, but are very poor in Pb and demonstrate a low to moderate content of Ag and Au. Typically, the deposits are low to very low in ore and metal reserves. Cyprus-type deposits were irregularly distributed during geological history. The most ancient of them were formed in the Neoproterozoic, while the bulk of the deposits are Ordovician or Cretaceous in age. Their possible Paleoproterozoic analogues can be found in the Svecofennian belt (Outokumpu ore district), while modern ones are confined to the Explorer and Endeavour Ridges and southern segment of the Juan de Fuca Ridge.  相似文献   
106.
Stream waters draining granitic terrains from the highest part (850 to 2200 m a.s.l.) of Sierras Pampeanas (Córdoba, Argentina, ∼32°S, ∼65°W) were sampled in order to define sources and distribution of dissolved rare earth elements (REE), and to describe the geochemical processes that govern their mobility. The contribution of the regional granite to the dissolved REE pool in stream water is limited due to the physical conditions predominating in the area (i.e., steep slopes and semiarid climate). Therefore, precipitation is considered a seasonally significant source controlling REE concentration in stream water. Dissolved REE concentrations are inversely correlated with monthly precipitation and rainfall frequency. During the rainy season (i.e., the austral summer) REE concentrations in stream water are lower than during the dry season (i.e., austral winter). Such low concentrations reflect the balance between the REE input from precipitation and their removal by adsorption. In contrast, during the dry season, the longer residence time of water within fractures and colluvium determines an increased REE concentration in the base flow. Lower pH values also contribute to raise REE concentration through desorption from mineral surfaces.  相似文献   
107.
108.
109.
110.
The neotectonic structures of the Lower Oka (Nizhneokskii) Region formed under different geodynamic conditions. This is attested by the morphology, orientation, internal structure, and jointing of the structures. The Oka-Tsna arc formed under the effect of tension from an inner source on the one hand and stress from the Alpian belt on the other hand. The latitudinally-oriented structures of the northwestern slope of the Tokmovo arc emerged as a result of uplift and widening. Both types of structure are combined within the limits of the Oka-Murom trough, which is a geodynamically active zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号