全文获取类型
收费全文 | 56018篇 |
免费 | 2997篇 |
国内免费 | 2093篇 |
专业分类
测绘学 | 2170篇 |
大气科学 | 5193篇 |
地球物理 | 11401篇 |
地质学 | 20822篇 |
海洋学 | 5674篇 |
天文学 | 11139篇 |
综合类 | 848篇 |
自然地理 | 3861篇 |
出版年
2022年 | 567篇 |
2021年 | 768篇 |
2020年 | 876篇 |
2019年 | 876篇 |
2018年 | 1310篇 |
2017年 | 1231篇 |
2016年 | 1566篇 |
2015年 | 1108篇 |
2014年 | 1565篇 |
2013年 | 2898篇 |
2012年 | 1774篇 |
2011年 | 2254篇 |
2010年 | 1966篇 |
2009年 | 2480篇 |
2008年 | 2261篇 |
2007年 | 2228篇 |
2006年 | 2169篇 |
2005年 | 1797篇 |
2004年 | 1757篇 |
2003年 | 1571篇 |
2002年 | 1563篇 |
2001年 | 1350篇 |
2000年 | 1391篇 |
1999年 | 1316篇 |
1998年 | 1253篇 |
1997年 | 1224篇 |
1996年 | 1009篇 |
1995年 | 993篇 |
1994年 | 967篇 |
1993年 | 829篇 |
1992年 | 778篇 |
1991年 | 683篇 |
1990年 | 742篇 |
1989年 | 621篇 |
1988年 | 625篇 |
1987年 | 679篇 |
1986年 | 565篇 |
1985年 | 783篇 |
1984年 | 845篇 |
1983年 | 821篇 |
1982年 | 722篇 |
1981年 | 652篇 |
1980年 | 672篇 |
1979年 | 575篇 |
1978年 | 569篇 |
1977年 | 531篇 |
1976年 | 544篇 |
1975年 | 521篇 |
1974年 | 534篇 |
1973年 | 512篇 |
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
41.
Excavations in 1980–1981 at sites (32MZ319 and 32MZ380) along Cinnamon Creek Ridge in the Little Missouri River Badlands of McKenzie County, North Dakota, unexpectedly revealed at each locality the presence of one or more deeply buried paleosols with associated cultural materials. At both sites, 32MZ319 and 32MZ380, multiple paleosols are present, each of which is terminated by an episode of aeolian deposition. Fifteen radiocarbon dates on these paleosols establish an incipient chronology for paleosol development in the study area and permit correlation with other High Plains archaeological complexes. Geological and archaeological data for the two multiple paleosol sites are summarized. 相似文献
42.
Wave Generation from Explosions in Rock Cavities 总被引:1,自引:0,他引:1
—?We have developed a measurement method to monitor P- and S-waves generated from laboratory-scale explosions in meter-sized rock samples at a series of stations, as well as invented a device to drill spherical cavities in rock, with diameters up to 10?centimeters. We applied these to experiments in Bedford limestone in which spherical/cylindrical explosives (0.2 to 1.9?g) were centrally placed in 1.2- to 3-cm diameter cavities. Stress waves generated by the explosions were recorded within a radius of 25?cm. The radial stress wave records and post-explosion studies demonstrate that S-waves are generated from explosions in cavities as a result of both wave mode-conversion from the cavity wall and crack propagation in rocks. The experimental results of wave generation from the explosions in spherical and cylindrical cavities demonstrate the cavity geometrical effect on the resulting wave pattern. The P- and S-waves generated by explosions and crack propagation in rocks are analyzed. A simple analytic model for P-wave generation is proposed to explain the differences of P-wave-induced displacement histories between the observed waveforms and those predicted by a step-pressure source. Generally, the qualitative predictions of this model fit the observations. The present results demonstrate the importance of rock cracking and cavities in P- and S-wave generation. 相似文献
43.
A very large scale GIS-based groundwater flow model for the Nubian sandstone aquifer in Eastern Sahara (Egypt,northern Sudan and eastern Libya) 总被引:2,自引:0,他引:2
A three-dimensional GIS-based groundwater flow model for the Nubian Sandstone Aquifer in the eastern Sahara was developed and calibrated under steady-state and transient conditions. The model was used to simulate the response of the aquifer to climatic changes that occurred during the last 25,000 years. The simulation results indicated that the groundwater in this aquifer was formed by infiltration during the wet periods 20,000 and 5,000 years b.p. The recharge of groundwater due to regional groundwater flow from more humid areas in the south was excluded. It also indicates that the Nubian Aquifer System is a fossil aquifer, which had been in an unsteady state condition for the last 3,000 years.
Resumen Fue desarrollado un modelo de flujo de agua subterránea en tres dimensiones, basado en un SIG, para el Acuífero Arenisca Nubian en el Sahara Oriental, el cual fue calibrado para condiciones de estado estacionario y transitorio. El modelo se usó para simular la respuesta del acuífero a los cambios climáticos que ocurrieron durante los últimos 25000 años. Los resultados de esta simulación indicaron que el agua subterránea en este acuífero, se formó por infiltración, durante los períodos húmedos que hubo hace 20000 y 5000 años, antes del presente. Fue excluida la recarga del acuífero debida a un flujo regional de agua subterránea proveniente de áreas con un clima más húmedo en el sur. El modelo también muestra, que el Sistema Acuífero Nubian es un acuífero fósil, el cual ha permanecido en una condición de estado no estacionario, durante los últimos tres mil años.
Résumé Pour laquifère gréseux Nubien de Sahara -Est on a mis au points un modèle tridimensionnel, basé sur GIS. Le modèle a été calibré tant pour lécoulement stationnaire que pour lécoulement transitoire. On a simulé après la réponse de laquifère aux changements climatiques des derniers 25000 ans. Les résultats des simulations indiquent que la nappe a été rechargée par des infiltrations pendant une période humide qui sétend 5000 et 20000 ans, dès temps actuel. On na pas pris en compte la recharge de laquifère par la zone plus humide située dans sa partie sud. Le modèle indique aussi que leau de laquifère Nubien est une eau fossile qui a eu un écoulement transitoire pendant les derniers 3000 ans.相似文献
44.
45.
Philip T. Harte 《Environmental Earth Sciences》2017,76(6):251
A common assumption with groundwater sampling is that low (<0.5 L/min) pumping rates during well purging and sampling captures primarily lateral flow from the formation through the well-screened interval at a depth coincident with the pump intake. However, if the intake is adjacent to a low hydraulic conductivity part of the screened formation, this scenario will induce vertical groundwater flow to the pump intake from parts of the screened interval with high hydraulic conductivity. Because less formation water will initially be captured during pumping, a substantial volume of water already in the well (preexisting screen water or screen storage) will be captured during this initial time until inflow from the high hydraulic conductivity part of the screened formation can travel vertically in the well to the pump intake. Therefore, the length of the time needed for adequate purging prior to sample collection (called optimal purge duration) is controlled by the in-well, vertical travel times. A preliminary, simple analytical model was used to provide information on the relation between purge duration and capture of formation water for different gross levels of heterogeneity (contrast between low and high hydraulic conductivity layers). The model was then used to compare these time–volume relations to purge data (pumping rates and drawdown) collected at several representative monitoring wells from multiple sites. Results showed that computation of time-dependent capture of formation water (as opposed to capture of preexisting screen water), which were based on vertical travel times in the well, compares favorably with the time required to achieve field parameter stabilization. If field parameter stabilization is an indicator of arrival time of formation water, which has been postulated, then in-well, vertical flow may be an important factor at wells where low-flow sampling is the sample method of choice. 相似文献
46.
Haploborolls and Ustifluvents with A-C horizonation characterize Holocene soil development in alluvium and colluvium of the Laddie Creek valley. Cumulic soils with overthickened A horizons, including those of Altithermal age, have formed along the valley walls under the influence of spring activity from the Amsden Formation (Mississippian-Pennsylvanian). Soil texture, mineralogy, and to some extent color, are inherited largely from sediment derived from the Amsden and Tensleep (Pennsylvanian) Formations. The valley was able to support human occupation during Altithermal time (ca. 7500-4000 B.P.) because of springs emanating from the valley walls. Past spring locations are identified from soil morphology and stratigraphy. Springs are still active along the valley, although they have shifted positions many times in the past. The association of spring soils with Altithermal-age occupation at the site (ca. 6600-5700 B.P.) does not coincide with the caliche concept of the Altithermal paleosol in Holocene alluvial valleys in Wyoming basins as identified by Leopold and Miller. Nevertheless, early man of Altithermal time probably sought higher elevations within mountains of the region where springs offered water and the environs provided food and shelter—thus enabling human groups to survive the drought, and possible high temperatures, which seemingly prevailed in the basins and plains. 相似文献
47.
A Central-European nowcasting system which has been developed for use in mountainous terrain is tested in the Whistler/Vancouver area as part of the SNOW-V10 experiment. The integrated nowcasting through comprehensive analysis system provides hourly updated gridded forecasts of temperature, humidity, and wind, as well as precipitation forecasts which are updated every 15 min. It is based on numerical weather prediction (NWP) output and real-time surface weather station and radar data. Verification of temperature, relative humidity, and wind against surface stations shows that forecast errors are significantly reduced in the nowcasting range compared to those of the driving NWP model. The main contribution to the improvement comes from the implicit bias correction due to use of the latest observations. Relative humidity shows the longest lasting effect, with >50 % reduction of mean absolute error up to +4 h. For temperature and wind speed this percentage is reached after +2 and +3 h, respectively. Two cases of precipitation nowcasting are discussed and verified qualitatively. 相似文献
48.
49.
Charles A. Stock Michael A. Alexander Nicholas A. Bond Keith M. Brander William W.L. Cheung Enrique N. Curchitser Thomas L. Delworth John P. Dunne Stephen M. Griffies Melissa A. Haltuch Jonathan A. Hare Anne B. Hollowed Patrick Lehodey Simon A. Levin Jason S. Link Kenneth A. Rose Ryan R. Rykaczewski Jorge L. Sarmiento Ronald J. Stouffer Franklin B. Schwing Francisco E. Werner 《Progress in Oceanography》2011,88(1-4):1-27
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models. 相似文献
50.