首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50609篇
  免费   850篇
  国内免费   614篇
测绘学   1282篇
大气科学   3326篇
地球物理   9457篇
地质学   18547篇
海洋学   4906篇
天文学   12039篇
综合类   115篇
自然地理   2401篇
  2022年   361篇
  2021年   604篇
  2020年   682篇
  2019年   790篇
  2018年   1551篇
  2017年   1486篇
  2016年   1716篇
  2015年   884篇
  2014年   1591篇
  2013年   2778篇
  2012年   1780篇
  2011年   2256篇
  2010年   2054篇
  2009年   2572篇
  2008年   2251篇
  2007年   2313篇
  2006年   2169篇
  2005年   1443篇
  2004年   1444篇
  2003年   1331篇
  2002年   1299篇
  2001年   1147篇
  2000年   1122篇
  1999年   942篇
  1998年   964篇
  1997年   909篇
  1996年   742篇
  1995年   704篇
  1994年   737篇
  1993年   572篇
  1992年   577篇
  1991年   507篇
  1990年   601篇
  1989年   468篇
  1988年   466篇
  1987年   527篇
  1986年   425篇
  1985年   589篇
  1984年   593篇
  1983年   560篇
  1982年   566篇
  1981年   440篇
  1980年   491篇
  1979年   396篇
  1978年   409篇
  1977年   370篇
  1976年   335篇
  1975年   353篇
  1974年   336篇
  1973年   325篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Pluto and the chaotic satellite system of Neptune may have originated from a single encounter of Neptune with a massive solar system body. A series of numerical experiments has been carried out to try to set limits on the circumstances of such an encounter. These experiments show that orbits very much like those of Pluto, Triton, and Nereid can result from a single close encounter of such a body with Neptune. The implied mass range and encounter velocities limit the source of the encountering body to a former trans-Neptunian planet in the 2- to 5-Earth-mass range.  相似文献   
992.
Photospheric and chromospheric spectroscopic Doppler rotation rates for the full solar disk are analyzed for the period July, 1966 to July, 1978. An approximately linear secular increase of the equatorial rate of 3.7% for these 12 years is found (in confirmation of Howard, 1976). The high latitude rates above 65 ° appear to vary with a peak-to-peak amplitude of 8%, or more, phased to the sunspot cycle such that the most rapid rotation occurs at, or following, solar maximum. The chromosphere, as indicated by H, has continued to rotate on the average 3% faster than the photosphere agreeing with past observations. Sources of error are discussed and evaluated.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   
993.
The discrepancy between the overhead E-region current and the magnetic D-component is studied using data obtained by the Chatanika incoherent scatter radar (L = 5.6). The F-region horizontal current is estimated to be too small to cause the observed D-deflection. Also, the assumption that the magnetic effects of the Pedersen and field-aligned currents cancel each other on the ground is shown to be inadequate to solve the problem. The significance of the inclination angle in the data analysis and the importance of the field-aligned current sheets are discussed.  相似文献   
994.
We present out methods of measurement and reduction of high-dispersion photographic spectra of Venus. Our preliminary results are consistent with slow direct or no rotation at the level we sample, and disagree strongly with a 4-day retrograde rotation. A serious systematic error, which affects much published work, is due to blending of solar lines in the sky with those reflected from the planet. This always tends to produce a spurious retrograde “rotation.” Only data obtained in a dark sky, or daytime observations from which the sky lines have been accurately subtracted, can be relied upon. All such data give low wind speeds.  相似文献   
995.
Skylab S-054 data have been used to examine the flux from X-ray bright points with 90 s time resolution. There is evidence of a steady heating input, similar to one reported for active region loops. Also observed are impulsive brightenings of bright points and rapid decays which are consistent with a sudden turn-off of the steady heating.  相似文献   
996.
Helios-1 and 2 spacecraft allowed a detailed investigation of the radial dependence of the interplanetary magnetic field components between 0.3 and 1 AU. The behaviour of the radial component B ris in a very good agreement with Parker's model (B r r -2) and the azimuthal component B also shows a radial dependence which is close to theoretical predictions (B r -1). Experimental results for the normal component B and for the field magnitude B are consistent with those from previous investigations. The relative amplitude of the directional fluctuations with periods less than 12 hr is essentially independent of heliocentric distance, while their power decreases approximately as r –3 without any appreciable difference between higher and lower velocity regimes.Also at Laboratorio Plasma nello Spazio, CNR, Frascati.  相似文献   
997.
COSMOS measures on a deep UK Schmidt Telescope Plate have been used to obtain the number-magnitude count for galaxies in a field of 14.6 square degrees near the South Galactic Pole. The results are in excellent agreement with data for the North Galactic Pole for galaxies fainter thanB=18.0, indicating no large-scale differences between north and south. A deficiency in numbers is observed for galaxies withB16.0. This is comparable to the deficiency atB17.5 for counts at the North Galactic Pole and supports the suggested asymmetry of the bright galaxy distribution between north and south galactic poles.  相似文献   
998.
Phase curves for the CO2 bands at 7883, 7820, and 8689 Å are presented. While the weaker bands at 7820 and 7883 Å show a definite “inverse phase effect,” the band at 8689 Å shows a more normal phase curve; it also exhibited much larger day-to-day variations in the CO2 abundance near superior conjunction in 1971. Because the variation of the phase curves with band strength is comparable to temporal variations on Venus, simultaneous observations of strong and weak bands are still needed to determine the dependence on band strength accurately.  相似文献   
999.
Io's neutral sodium emission cloud was monitored during the period of Voyager 1 encounter from two independent ground-based sites. Observations from Table Mountain Observatory verified the continued existence of the “near-Io cloud” (d < 1.5 × 105 km, for 4πI > 1 kR; R denotes Rayleigh) while those from Wise Observatory showed a deficiency in the weaker emission at greater distances from Io. The sodium cloud has been monitored from both observatories for several years. These and other observations demonstrate that the behavior of the cloud is complex since it undergoes a variety of changes, both systematic and secular, which can have both time and spatial dependencies. The cloud also displays some characteristics of stability. Table Mountain images and high-dispersion spectra (resolution ~0.2 A?) indicate that the basic shape and intensity of the “near cloud” have remained relatively constant at least since imaging observations began in 1976. Wise Observatory low-dispersion spectra (resolution ~1 A?) which have been obtained since 1974 demonstrate substantial variability of the size and intensity of the “far cloud” (d ? 1.5 × 105 km) on a time scale of months or less. Corresponding changes in the state of the plasma associated with the Io torus are suggested, with the period of Voyager 1 encounter represented as a time of unusually high plasma temperature and/or density. Dynamic models of the sodium cloud employing Voyager 1 plasma data provide a reasonable fit to the Table Mountain encounter images. The modeling assumptions of anisotropic ejection of neutral sodium atoms from the leading, inner hemisphere of Io with a velocity distribution characteristic of sputtering adequately explain the overall intensity distribution of the “near cloud”. During the Voyager 1 encounter period there appeared a region of enhanced intensity projecting outward from Io's orbit and inclined to the orbital plane. This region is clearly distinguished from the sodium emission normally aligned with the plane of Io's orbit. The process responsible for this phenomenon is not yet understood. Similar but less pronounced features are also present in several Table Mountain images obtained over the past few years.  相似文献   
1000.
Starting with the assumption that the micron-sized particles which make up the bright Jovian ring are fragments of erosive collisions between micrometeoroid projectiles and large parent bodies, a physical model of the ring is calculated. The physics of high-velocity impacts leads to a well-defined size distribution for the ejecta, the optical properties of which can be compared with observation. This gives information on the ejecta material (very likely silicates) and on the maximum size of the projectiles, which turns out to be about 0.1 μm. The origin of these projectiles is discussed, and it is concluded that dust particles ejected in volcanic activity from Io are the most likely source. The impact model leads quite naturally to a distribution in ejecta sizes, which in turn determines the structure of the ring. The largest ejecta form the bright ring, medium-sized ejecta form a disk extending all the way to the Jovian atmosphere, and the small ejecta form a faint halo, the structure of which is dominated by electromagnetic forces. In addition to the Io particles, interaction with interplanetary micrometeoroids is also considered. It is concluded that μm-sized ejecta from this source have ejection velocities which are several orders of magnitude too large, and thus cannot contribute significantly to the observed bright ring. However, the total mass ejection rate is significant. Destruction of these ejecta by the Io particles may provide additional particles for the halo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号