首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45385篇
  免费   643篇
  国内免费   428篇
测绘学   1044篇
大气科学   2829篇
地球物理   8709篇
地质学   16665篇
海洋学   4263篇
天文学   10822篇
综合类   89篇
自然地理   2035篇
  2022年   330篇
  2021年   591篇
  2020年   579篇
  2019年   702篇
  2018年   1436篇
  2017年   1340篇
  2016年   1503篇
  2015年   740篇
  2014年   1369篇
  2013年   2437篇
  2012年   1581篇
  2011年   1961篇
  2010年   1876篇
  2009年   2306篇
  2008年   2028篇
  2007年   2188篇
  2006年   2002篇
  2005年   1313篇
  2004年   1295篇
  2003年   1224篇
  2002年   1204篇
  2001年   1066篇
  2000年   996篇
  1999年   842篇
  1998年   835篇
  1997年   804篇
  1996年   620篇
  1995年   629篇
  1994年   613篇
  1993年   476篇
  1992年   497篇
  1991年   418篇
  1990年   490篇
  1989年   437篇
  1988年   396篇
  1987年   444篇
  1986年   378篇
  1985年   503篇
  1984年   518篇
  1983年   518篇
  1982年   484篇
  1981年   412篇
  1980年   416篇
  1979年   386篇
  1978年   351篇
  1977年   344篇
  1976年   302篇
  1975年   311篇
  1974年   293篇
  1973年   323篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
991.
Eluvial concentration of platinum-group minerals (PGM) has developed in the south of New Caledonia, from the weathering of a mafic and ultramafic cumulate. The platinum/palladium (Pt/Pd) ratio evolution from the bottom to the top of the weathering profile indicates a chemical mobilization of Pd in supergene environment. The examination by scanning electron microscopy of the residual PGM collected in the weathering profile and their chemical characterization by electronic microprobe show a preservation of the structure and chemical signature (in the core of the grains) of the fresh PGM. This clearly demonstrates that the PGM studied here are residual and are affected by dissolution process.  相似文献   
992.
Subsurface thermal structure in Tohoku district are characterized by existing data such as geothermal resources maps, drill hole thermal gradients, Curie point depths and hypocenters distribution maps. The collected data are registered in a database system, then, compared in plan view, cross-section and bird's-eye pictures. The comparison indicates that subsurface temperatures extrapolated from drill hole thermal gradients are generally concordant to the Curie point depth, assumed to be 650 °C. Tohoku district is generally divided into 5 type areas; fore arc lowland, fore arc mountain country, Quaternary volcanic terrain, back arc lowland and back arc mountain country. The surface thermal manifestations in Quaternary volcanic terrain are mainly controlled by the magma chambers as heat sources, while, surface thermal features such as hot springs in non-volcanic areas are controlled by degrees of heat flows, and hydrothermal flows in permeable Cenozoic formations and along permeable fault zones.  相似文献   
993.
The Cauvery Shear Zone (CSZ) is a crustal-scale shear system within the Southern Granulite Terrain along the southern margin of the Archaean Dharwar craton. Structural interpretation of satellite data and field observations reveal four major shear zones within the CSZ system. They show dextral shear kinematics synchronous with a major Neoproterozoic tectono-metamorphic event (D2) associated with intracrustal melting and migmatisation. The disposition, geometry and contemporaneity of shear fabrics of the CSZ system are modelled in terms of a crustal-scale flower structure akin to transpressional and collisional orogens. In the light of recent seismic evidence for a displaced Moho structure and a mid- to lower-crustal low velocity zone, the flower structure across the CSZ may extend to mantle depths.  相似文献   
994.
Major, trace element compositions and Sr–Nd isotopic characteristics of charnockitic gneisses from the Southern Granulite Terrain (SGT), South India are presented. The study region encompasses the central segment of the Cauvery Shear Zone system (CSZ) and regions within the Madurai Block (MB) immediately south of it (designated here as the CSZ/MB and MB domains). Differences in the compositions and source characteristics between charnockitic rocks of the CSZ vis-à-vis those of the CSZ/MB and MB regions are highlighted. Foremost, the charnockites and enderbites of the CSZ show highly fractionated REE patterns with positive Eu-anomalies, depleted HREE, Y and near chondritic εNd0 and initial-87Sr/86Sr at ca. 2.5 Ga, consistent with hydrous partial melting of amphibolitic crust with residual garnet and hornblende for the parental melts. By contrast, modeled at ca. 1.8 Ga and 0.8 Ga, the CSZ/MB and MB charnockitic rocks, which show a wider range of Ti and P, relatively lower degree of HREE depletion, commonly negative Eu-anomalies and undepleted Y, present clear evidence for involvement of Archaean crustal components in sources of their magmatic protoliths. There is also evidence for significant intracrustal melting processes within a thickened crust at elevated temperatures between 800 and 1000 °C. Implications to the controversial Archaean–Neoproterozoic terrane boundary problem of the SGT are discussed.  相似文献   
995.
996.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   
997.
The Sivamalai alkaline complex lies at the southern margin of the Cauvery Shear System that separates the Archaean and Proterozoic domains of the Southern Granulite Terrain in India. U–Pb TIMS dating of zircon from a pegmatitic syenite sample in the complex yields a concordant age of 590.2 ± 1.3 (2σ) Ma which is interpreted to date the intrusion of the alkaline rocks. A lower concordia intercept at 168 ± 210 Ma defined by two grains with high common lead may indicate post-magmatic disturbances due to recrystallisation which is also evident in the CL images of the zircons. EPMA dating of monazite from a post-kinematic pegmatite which intrudes the crystalline basement hosting the alkaline rocks yields an age of 478 ± 29 (2σ) Ma and provides a lower bracket for the main phase of tectonism in this part of the Southern Granulite Terrain. The Pan-African high-grade metamorphism and ductile deformation has thus most likely affected the alkaline rocks. This is supported by the presence of a metamorphic foliation and extensive recrystallisation textures seen in the rocks. The major and trace element concentrations measured on selected samples reveals the presence of both enriched and depleted rock types. The enriched group includes ferrosyenite and nepheline syenite while the depleted group has only nepheline syenites. The trace element depletion of some nepheline syenites is interpreted to be a result of fractional crystallization involving the removal of accessory phases like zircon, titanite, apatite and allanite.  相似文献   
998.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号