High-altitude lake sediments are often used as archives for environmental changes and their chemical and isotopic compositions provide significant constraints on natural and anthropogenic long-term changes that have occurred in their catchment area. Here, trace-element concentrations and Pb isotopes are presented for two sedimentary cores from Lake Blanc Huez in the French Alps, to trace the impact of climate changes and human activities over the Holocene. Lead and Ag contents are very high and clearly dominated by input from a Pb–Ag vein located a few meters from the lakeshore, a vein that also buffers the Pb isotopes. Mining of this vein in medieval times is recorded in the corresponding lake sediments with high Ag content coupled with high Pb/U ratio. These chemical characteristics can be used to constrain the major Holocene climate changes. Significant advances of glaciers next to the lake produced sediments with Ag and Pb concentration peaks and high Pb/U ratios due to accelerated erosion of the Pb–Ag vein, similar to the effects of the medieval mining. In contrast, reduced glacier activity led to the formation of organic-rich sediments with high U and As contents and low Pb/U ratios. More generally, the observed combination of chemical changes could be used elsewhere to decipher environmental changes over long periods of time. 相似文献
Environmental flows are generally characterized by complex bed morphology and high current speeds. Such configurations favor the formation of vortex structures that strongly affect hydrody-namics and sediment transport. Large-Eddy Simulation (LES) enables investigation of the dynam-ics of the largest turbulence scales and, thanks to enhanced calculation resources, has now become applicable for simulating environmental flows. In this paper, a LES approach is developed in a CFD code (TELEMAC-3D), which was originally developed to simulate free surface flows using RANS methods. The present developments involve implementing subgrid models, boundary con-ditions and numerical schemes suitable for LES. The LES version of TELEMAC-3D was validated by comparing results on the model with experimental data for flow past a cylinder. Then, the model was applied to a test case representing flow over dunes. After validating the hydrodynamics, the model was used to assess the bottom shear stress, using both a RANS and a LES approach. Com-parison highlighted the potential contribution of LES to investigating the hydrodynamic forces acting on the bottom. 相似文献
We use the mesoscale meteorological model Meso-NH, taking the drag force of trees into account under stable, unstable and neutral conditions in a real case study. Large-eddy simulations (LES) are carried out for real orography, using a regional forcing model and including the energy and water fluxes between the surface (mostly grass with some hedges of trees) and the atmosphere calculated using a state-of-the-art soil-vegetation-atmosphere-transfer model. The formulation of the drag approach consists of adding drag terms to the momentum equation and subgrid turbulent kinetic energy dissipation, as a function of the foliage density. Its implementation in Meso-NH is validated using Advanced Regional Prediction System simulation results and measurements from Shaw and Schumann (Boundary-Layer Meteorol, 61(1):47?C64, 1992). The simulation shows that the Meso-NH model successfully reproduces the flow within and above homogeneous covers. Then, real case studies are used in order to investigate the three different boundary layers in a LES configuration (resolution down to 2 m) over the ??Lannemezan 2005?? experimental campaign. Thus, we show that the model is able to reproduce realistic flows in these particular cases and confirm that the drag force approach is more efficient than the classical roughness approach in describing the flow in the presence of vegetation at these resolutions. 相似文献
Long-term exploitation schemes in many regions are often based solely on hydrodynamic factors, while the agricultural use of groundwater undergoes significant changes over time. The Bouhefna-Haffouz aquifer system in central Tunisia is one of those cases where an aquifer exploitation scheme was well designed hydrodynamically to address the political needs at the time. Fifty years later, a numerical groundwater model has been conducted to assess the sustainability of the scheme. Results show that the scheme aimed to lower the groundwater level to reduce overflow to Merguellil Wadi and maintain it at a level that benefits agricultural profitability. This caused loss of the Merguellil baseflow, forcing farmers to switch from traditional irrigation canals to deep wells and motor pumps, thereby disrupting the hydrological budget even further. The numerical model indicates that the flow to the wadi reached zero in 1978, the average flow by vertical leakage decreased from 8 hm3 in 1970 to 2 hm3 in 2020, and the horizontal percolation between the regional aquifer units increased from 1 hm3 in 1970 to 6 hm3 in 2020. Although the groundwater exploitation scheme was not previously considered a factor in local hydrological changes, the results of this study demonstrate the significant impact of societal behavior following the scheme’s implementation on the hydrological budget of Merguellil Wadi.
The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses. 相似文献
The Helioseismic and Magnetic Imager project recently started processing the continuum-intensity images following global helioseismology procedures similar to those used to process the velocity images. The spatial decomposition of these images has produced time series of spherical harmonic coefficients for degrees up to \(\ell=300\), using a different apodization than the one used for velocity observations. The first 360 days of observations were processed and are made available. I present initial results from fitting these time series using my fitting method and compare the derived mode characteristics to those estimated using coeval velocity observations. 相似文献
ABSTRACTWe study the problem of landuse characterization at the urban-object level using deep learning algorithms. Traditionally, this task is performed by surveys or manual photo interpretation, which are expensive and difficult to update regularly. We seek to characterize usages at the single object level and to differentiate classes such as educational institutes, hospitals and religious places by visual cues contained in side-view pictures from Google Street View (GSV). These pictures provide geo-referenced information not only about the material composition of the objects but also about their actual usage, which otherwise is difficult to capture using other classical sources of data such as aerial imagery. Since the GSV database is regularly updated, this allows to consequently update the landuse maps, at lower costs than those of authoritative surveys. Because every urban-object is imaged from a number of viewpoints with street-level pictures, we propose a deep-learning based architecture that accepts arbitrary number of GSV pictures to predict the fine-grained landuse classes at the object level. These classes are taken from OpenStreetMap. A quantitative evaluation of the area of Île-de-France, France shows that our model outperforms other deep learning-based methods, making it a suitable alternative to manual landuse characterization. 相似文献
The morphology, molecular composition, and distribution of organic matter (OM) were investigated in a suite of CR chondrites to better constrain its hydrothermal evolution. Multiple focused ion beam sections were extracted from the matrices of seven CR chondrites. Scanning transmission X-ray microscopy and transmission electron microscopy reveal OM ubiquitously distributed across the CR matrices. OM mainly occurs as either discrete submicron rounded or irregularly shaped vein-like particles. Two spectral populations of organic particles were identified by carbon K-edge X-ray absorption near edge structure (XANES): the most abundant one, similar to insoluble organic matter (IOM) residues, contains aromatic, carbonyl, and carboxylic groups. The second population is more aromatic-rich and lacks a distinctive carbonyl peak. An additional, ubiquitous organic component occurs associated with amorphous silicates and phyllosilicates. Less aromatic but aliphatic- and carboxylic-rich, this diffuse OM is interpreted as the result of the redistribution of organic compounds by aqueous fluids. The most altered CR1 GRO 95577 contains a more mature OM and highly aliphatic- and carboxylic-rich diffuse OM. This evolution, from the CR2s to the CR1, is comparable to that of terrestrial gas shale maturation involving cracking reactions, releasing bitumen-like, aliphatic-, and carboxylic-rich compounds, and aromatic residues. Our observations support the accretion of soluble OM and its later polymerization to IOM, as well as the maturation of IOM and its partial oxidation, releasing mobile compounds. The differences in GRO 95577 are clearly attributable to the hydrothermal episode(s), but the relative role of water and temperature on the evolution of OM remains elusive. 相似文献