首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   7篇
  国内免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   37篇
地质学   37篇
海洋学   25篇
天文学   11篇
自然地理   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2009年   3篇
  2008年   10篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   3篇
  1975年   3篇
  1973年   3篇
  1962年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
71.
 The surface structure of the tetrahedral sheet of dioctahedral mica muscovite was compared to that of the tetrahedral sheet of trioctahedral mica phlogopite using atomic force microscopy (AFM). AFM revealed distinct structural differences between the tetrahedral sheet surfaces of the two micas. The hexagonal ring in the AFM image of muscovite elongates in the [3 1 0] direction, and the groove runs perpendicular to the [3 1 0] direction. On the phlogopite surface, the hexagonal ring contracts slightly in the a axis direction, but the groove is not apparent. These results were consistent with the bulk structure data of the two micas determined by X-ray diffraction (XRD). The degree of surface relaxation was much larger in muscovite than in phlogopite. In muscovite, the interlayer K reduces the amount of tetrahedral rotation that actually occurs, since the interlayer K is too large for its hexagonal hole after full tetrahedral rotation. Thus, it is naturally expected that muscovite will show more tetrahedral rotation after removal of the interlayer K. It is also expected that muscovite will show more tilting of SiO4 tetrahedra after cleaving, since an attractive force between the hydrogen in the OH group and the lower basal oxygen should be in operation, due to the decreased distance between them following interlayer K removal. Received: 14 March 2000 / Accepted: 29 July 2000  相似文献   
72.
73.
74.
Some meteorites consist of a mix of components of various parent bodies that were presumably brought together by past collisions. Impact experiments have been performed to investigate the degree of target fragmentation during such collisions. However, much less attention has been paid to the fate of the impactors. Here, we report the results of our study of the empirical relationship between the degree of projectile fragmentation and the impact conditions. Millimeter‐sized pyrophyllite and basalt projectiles were impacted onto regolith‐like sand targets and an aluminum target at velocities of up to 960 m s?1. Experiments using millimeter‐sized pyrophyllite blocks as targets were also conducted to fill the gap between this study and the previous studies of centimeter‐sized rock targets. The catastrophic disruption threshold for a projectile is defined as the energy density at which the mass of the largest fragment is the half of the original mass. The thresholds with the sand target were 4.5 ± 1.1 × 104 and 9.0 ± 1.9 × 104 J kg?1, for pyrophyllite and basalt projectiles, respectively. These values are two orders of magnitude larger than the threshold for impacts between pyrophyllite projectiles onto aluminum targets, but are qualitatively consistent with the fact that the compressive and tensile strengths of basalt are larger than those of pyrophyllite. The threshold for pyrophyllite projectiles and the aluminum target agrees with the threshold for aluminum projectiles and pyrophyllite targets within the margin of error. Consistent with a previous result, the threshold depended on the size of the rocks with a power of approximately ?0.4 (Housen and Holsapple 1999). Destruction of rock projectiles occurred when the peak pressure was about ten times the tensile strength of the rocks.  相似文献   
75.
The strain space multiple mechanism model idealizes the behavior of granular materials on the basis of a multitude of virtual simple shear mechanisms oriented in arbitrary directions. Within this modeling framework, the virtual simple shear stress is defined as a quantity dependent on the contact distribution function as well as the normal and tangential components of interparticle contact forces, which evolve independently during the loading process. In other terms, the virtual simple shear stress is an intermediate quantity in the upscaling process from the microscopic level (characterized by contact distribution and interparticle contact forces) to the macroscopic stress. The stress space fabric produces macroscopic stress through the tensorial average. Thus, the stress space fabric characterizes the fundamental and higher modes of anisotropy induced in granular materials. Herein, the induced fabric is associated with monotonic and cyclic loadings, loading with the rotation of the principal stress, and general loading. Upon loading with the rotation of the principal stress axis, some of the virtual simple shear mechanisms undergo loading whereas others undergo unloading. This process of fabric evolution is the primary cause of noncoaxiality between the axes of principal stresses and strains. Although cyclic behavior and behavior under the rotation of the principal stress axis seem to originate from two distinct mechanisms, the strain space multiple mechanism model demonstrates that these behaviors are closely related through the hysteretic damping factor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
76.
Many studies have examined the Japan Sea basalts recovered during Ocean Drilling Program (ODP) Leg127/128. Of these, the 40Ar–39Ar dating undertaken is important in constraining the timing of the formation of the Japan Sea; however, the implications of their results do not appear to be fully appreciated by the geological community. In this paper, I reassess the 40Ar–39Ar age data of the basalts with reference to Nd–Sr isotopic data. The 40Ar–39Ar dating was performed on basalts somewhat enriched in large-ion lithophile elements and recovered from ODP Sites 794, 795 and the lower part of 797, yielding the plateau ages of 21.2–17.7 Ma. These basalts show the Nd–Sr isotopic signature of a moderately depleted mantle source (εNd: 0.6–6.9). In contrast, the basalts from the upper part of Site 797 have yet to be dated due to their low K content, although their Nd isotopic compositions are similar to that of MORB (εNd: 8.4–10.4). By analogy to the secular Nd–Sr isotopic trends reported for Sikhote-Alin and northeast Japan, the age of the upper basalts at Site 797 may be inferred to be younger than the lower basalts, probably around 16 Ma. The Nd–Sr isotopic compositions of the Japan Sea basalts have been interpreted in terms of eastward asthenospheric flow, as have the lavas of the Sikhote-Alin and northeastern Japan. The timing of volcanic activity in the Japan Sea region (i.e., from 21.2 to 14.86 Ma) is consistent with the timing of rotational crustal movements inferred from paleomagnetic studies of the Japanese Islands (i.e., 14.8–4.2 Ma for southwest Japan and 16.5–14.4 Ma for northeast Japan).  相似文献   
77.
Susumu  Kato  Amane  Waseda  Hideki  Nishita 《Island Arc》2006,15(3):304-312
Abstract   Six oil samples collected from the Sagara oil field, Shizuoka Prefecture, were geochemically analyzed. Unlike the Niigata oils, the Sagara oils: (i) are low-sulphur light oils dominated by gasoline and kerosene fractions; (ii) have low values of environment index in light hydrocarbon compositions; (iii) have high Pr/ n -C17 and low Ph/ n -C18 ratios and high oleanane/hopane ratios; (iv) have high relative abundance of C29 and low relative abundance of C28 regular steranes; and (v) have 'light' stable carbon isotope compositions. These characteristics show that the source rocks of the Sagara oils contain mainly marine organic matter, but with more input of terrigenous organic matter deposited under more oxic conditions compared to those of the Niigata oils. The light carbon isotope compositions and the low relative abundance of C28 regular steranes of the Sagara oils suggest that their source rock is not Miocene, but probably Paleogene in age. The Sagara oils probably migrated along faults from deeper parts of the basin.  相似文献   
78.
Abstract A multi-offset hydrophone vertical seismic profiling (VSP) experiment was done in a 747 m deep borehole at Nojima Hirabayashi, Hyogo prefecture, Japan. The borehole was drilled to penetrate the Nojima Fault, which was active in the 1995 Hyogo-ken Nanbu earthquake. The purpose of the hydrophone VSP is to detect subsurface permeable fractures and permeable zones and, in the present case, to estimate the permeability of the Nojima Fault. The analysis was based on a model by which tube waves are generated when incident P-waves compress the permeable fractures (or permeable zones) intersecting the borehole and a fluid in the fracture is injected into the borehole. Permeable fractures (or permeable zones) are detected at the depths of tube wave generation, and fracture permeability is calculated from the amplitude ratio of tube wave to incident P-wave. Several generations of tube waves were detected from the VSP sections. Distinct tube waves were generated at depths of the fault zone that are characterized by altered and deformed granodiorite with a fault gouge, suggesting that permeable fractures and permeable zones exist in the fault zone. Tube wave analysis shows that the permeability of the fault gouge from 624 m to 625 m is estimated to be approximately 2 × 10−12 m2.  相似文献   
79.
Major and trace element, and Sr-Nd isotope compositions were determined for Quaternary volcanic rocks from NE Sulawesi (the Sangihe are), Indonesia, in order to examine the origin of across-arc variation in lava and magma source chemistry. The arc is formed in an intraoceanic tectonic setting and is not associated with a backarc basin, thereby minimizing possible contributions from non-arc geochemical reservoirs. The geochemistry of these arc lavas is likely to provide essential information about the chemical characteristics of subduction components. All incompatible elements, except Pb, increase away from the volcancic front. Major element data for Mg-rich lavas together with available experimental data, suggest that primary magmas are produced at higher pressured by smaller degrees of partial melting beneath the backarc-side volcanoes. Rb/K and Ba/Pb are higher, and 87Sr/86Sr and 143Nd/144Nd are lower in backarc-side lavas. These variations may be attributed to generation of hydrous fluids in the downdragged hydrous peridotite layer at the base of the mantle wedge through the following reactions: decompositions of pargasitic amphibole to form phlogopite and breakdown of phlogopite to crystallize K-richterite, beneath the volcanic front and the backarc-side volcanoes, respectively.  相似文献   
80.
A mooring array with three automated sediment traps capable of collecting time series samples was deployed in the Panama Basin for one year beginning in December 1979. A series of six consecutive two-month long samples was collected at each of three depths (890, 2590 and 3560 m) in order to examine seasonal variation in the flux of planktonic foraminifera, and evaluate the contribution of foraminifera to the total carbonate flux.The flux of the larger planktonic foraminifera (250–500 μm and 500–1000 μm) is greatest during February–March when upwelling is most intense in the Panama Basin. In contrast, the maximum flux of the smaller foraminifera (125–250 μm) is associated with a phytoplankton bloom during the summer months (June through September). This size-dependent flux pattern appears to be a species specific effect. The flux of the larger foraminifera is dominated by non-spinose forms (i.e. Neogloboquadrina dutertrei and Globorotalia theyeri), while the flux of the smaller foraminifera consists predominantly of spinose species (i.e. Globigerinoides ruber, G. sacculifer and G. conglobatus). Although the magnitude of the flux varied throughout the year, the average weight of individual foraminiferal tests in different size fractions showed no seasonal variability.With the exception of the June–July period when there was a major coccolith bloom, planktonic foraminifera greater than 125 μm account for between 28 and 34% of the total carbonate flux at this location. During the coccolith bloom, planktonic foraminifera accounted for less than 2% of the total carbonate flux. Planktonic foraminifera in the 250–500 μm size range are the most significant contributors to the overall particulate flux, accounting for roughly 70–80% of the total foraminiferal fluxes measured at the three trap depths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号