首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   8篇
测绘学   13篇
大气科学   34篇
地球物理   56篇
地质学   64篇
海洋学   11篇
天文学   48篇
自然地理   23篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   15篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   24篇
  2011年   13篇
  2010年   7篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   15篇
  2004年   12篇
  2003年   11篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1976年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
101.
We have identified and characterized a basaltic Mars simulant that is available as whole rocks, sand and dust. The source rock for the simulant is a basalt mined from the Tertiary Tropico Group in the western Mojave Desert. The Mojave Mars Simulant (MMS) was chosen for its inert hygroscopic characteristics, its availability in a variety of forms, and its physical and chemical characteristics. The MMS dust and MMS sand are produced by mechanically crushing basaltic boulders. This is a process that more closely resembles the weathering/comminution processes on Mars where impact events and aerodynamic interactions provide comminution in the (relative) absence of water and organics. MMS is among the suite of test rocks and soils that was used in the development of the 2007/8 Phoenix Scout and is being used in the 2009 Mars Science Laboratory (MSL) missions. The MMS development team is using the simulant for research that centers on sampling tool interactions in icy soils. Herein we describe the physical properties and chemical composition of this new Mars simulant.  相似文献   
102.
103.
The molecular phase of the ISM constitutes the main source of fuel for the activity in starburst and AGNs. The physical conditions and chemical constitution of the molecular gas will change with, and respond to, the evolution of the activity. This paper includes a short discussion of the 12CO/13CO 1–0 line intensity ratio as a diagnostic tool of the molecular gas properties of luminous galaxies – paired with examples of high-resolution studies of how the line ratio varies within galaxies. A possible connection between the OH megamasers and galaxies with unusually high 12CO/13CO 1–0 line intensity ratios are also briefly discussed.The relative intensities of the dense gas tracers HNC, HCN, HCO+ and CN are a result of both chemistry and starburst evolution. The discussion on the interpretation of HNC 1–0 emission includes the importance of ion-neutral chemistry in a luminous starburst region. Finally, simple cartoon ISM models and how they can be applied to LIRGs and ULIRGs, are presented.  相似文献   
104.
For in situ astrobiological studies of Mars or other planets, we must employ strategies that will enable us to verify whether our approach and prototype instruments are actually capable of distinguishing life from non-life. This must be done against a background of rigorously conducted scientific characterization of the environment or sample types being considered for measurement by the instruments under development. In this study we show how a combination of mineralogical and textural features can be considered a biosignature in an early Mars analogue environment, Death Valley, California. We propose that it is a combination of features in context of the geologic matrix which allows determination of biogenicity to be made. Polymineralic microbialites (organosedimentary formations constructed by microorganisms) from a spring pool at Badwater, within Death Valley National Park, are composed of alternating biogenic and abiogenic minerals in a distinct triplet sequence related to wet and dry seasons. A microbial community, occurring as a black biofilm, produced paired layers of two different mineral types: manganese oxyhydroxides and calcite. These biogenic layers are separated from the next pair by a gypsum layer and appear to be laid down in the wet season, with the gypsum (a mineral positively identified on Mars) precipitating in the dry part of the year, abiogenically (i.e., not dependent on microbial metabolic activity for its deposition). In addition, textural features (smaller grain size and less geometric morphology) unique to the biogenic vs the abiogenic layers, were consistently observed so that texture served as a biosignature in this environment.  相似文献   
105.
For the first time, an albite orthogneiss has been recognised and dated within the HP–LT blueschist facies metabasites and metapelites of the Ile de Groix. It is characterised by a peraluminous composition, high LILE, Th and U contents, MORB-like HREE abundances and moderate Nb and Y values. A U–Pb age of 480.8?±?4.8?Ma was obtained by LA-ICP-MS dating of zircon and titanite. It is interpreted as the age of the magmatic emplacement during the Early Ordovician. Morphologically different zircon grains yield late Neoproterozoic ages of 546.6–647.4?Ma. Zircon and titanite U–Pb ages indicate that the felsic magmatism from the Ile de Groix is contemporaneous with the acid, pre-orogenic magmatism widely recognised in the internal zones of the Variscan belt, related to the Cambro-Ordovician continental rifting. The magmatic protolith probably inherited a specific chemical composition from a combination of orogenic, back-arc and anorogenic signatures because of partial melting of the Cadomian basement during magma emplacement. Besides, the late Devonian U–Pb age of 366?±?33?Ma obtained for titanite from a blueschist facies metapelite corresponds to the age of the HP–LT peak metamorphism.  相似文献   
106.
Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of ∼0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for ≤ 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon–nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung–Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.  相似文献   
107.
The Mars Exploration Rover Spirit investigated the igneous and alteration mineralogy and chemistry of Home Plate and its surrounding deposits. Here, we focus on using thermochemical modeling to understand the secondary alteration mineralogy at the Home Plate outcrop and surrounding Columbia Hills region in Gusev crater. At high temperatures (300 °C), magnetite occurs at very high W/R ratios, but the alteration assemblage is dominated by chlorite and serpentine over most of the W/R range. Quartz, epidote, and typical high‐T phases such as feldspar, pyroxene, and garnet occur at low W/R. At epithermal temperatures (150 °C), hematite occurs at very high W/R. A range of phyllosilicates, including kaolinite, nontronite, chlorite, and serpentine are precipitated at specific W/R. Amphibole, with garnet, feldspar, and pyroxene occur at low W/R. If the CO2 content of the system is high, the assemblage is dominated by carbonate with increasing amounts of an SiO2‐phase, kaolinite, carpholite, and chlorite with lower W/R. At temperatures of hydrous weathering (13 °C), the oxide phase is goethite, silicates are chlorite, nontronite, and talc, plus an SiO2‐phase. In the presence of CO2, the mineral assemblage at high W/R remains the same, and only at low W/R, i.e., with increasing salinity, carbonate precipitates. The geochemical gradients observed at Home Plate are attributed to short‐lived, initially high (300 °C) temperature, but fast cooling events, which are in agreement with our models and our interpretation of a multistage alteration scenario of Home Plate and Gusev in general. Alteration at various temperatures and during different geological processes within Gusev crater has two effects, both of which increase the habitability of the local environment: precipitation of hydrous sheet silicates, and formation of a brine, which might contain elements essential for life in diluted, easily accessible form.  相似文献   
108.
Stable carbon and nitrogen isotopes (δ13C, δ1?N) were used to analyse food web dynamics of two of the main estuaries of the Portuguese coast: Tejo and Mira. The ultimate sources of organic matter supporting production of some of the most abundant and commercially important fish species were determined; and seasonal, inter- and intra- estuarine differences in the trophic relations among producers and consumers were identified. Stable isotope analysis was performed in different producers, primary consumers (main prey items for fish) and fish species (Solea solea, Solea senegalensis, Pomatoschistus microps, Dicentrarchus labrax, Liza ramada, Diplodus vulgaris and Atherina presbyter) of two areas in each estuary, in July and October 2009. Model calculations showed that the main prey for the fish species in the Tejo estuary used mostly salt marsh-derived organic matter as nutritional sources, with no marked differences between the sampled months. Trophic levels of fish species from the same estuary differed at multiple scales: inter-species, seasonally and spatially (both between and within estuaries). Significant differences in isotopic composition of fish species were more pronounced spatially (between the two sampled areas in the estuary) than seasonally (between sampled months). Trophic relationships in both estuaries demonstrated that organic matter is transferred to higher trophic positions mainly through benthic pathways. This shows the flexibility of these species to share resources and to exploit temporary peaks in prey populations. The present results showed that extensive disturbance in intertidal habitats from both estuaries may potentially change the balance of organic matter in the base of these complex food webs.  相似文献   
109.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   
110.
The effect of density on the growth, recruitment of new ramets, biomass allocation, rhizome spacer length and rhizome branching of the submersed macrophyte Potamogeton perfoliatus L. was experimentally evaluated in a mesocosm with three different initial shoot densities. The findings suggest that the number of primary shoots available in the beginning of the season can strongly influence patterns of growth and clonal reproduction. In contrast to many studies that found decreasing production parameters with plant density, ramet and biomass production of Potamogeton perfoliatus plants were highest at medium plant density. This is probably due to negative feed-back through crowding at high density and unclear negative effects at low density. Shoot allocation tended to increase with density, rhizome allocation tended to decrease with density and root biomass remained unchanged. At low density Potamogeton perfoliatus produced longer rhizome spacers and more branchings than at higher densities. Shorter rhizome spacers at high plant density probably restrict patch expansion and cause discrete patch shapes. A likely mechanism for plastic changes in clonal architecture is increasing competition for light at increasing density, but other density-dependent factors may also contribute.Investigations on propagule numbers of tubers and turions show that self-regulation of ramet number was associated with self-regulation of propagule number in both Potamogeton perfoliatus and Potamogeton pectinatus, with higher densities producing less propagules per plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号